Skip to main content
Log in

Subsonic Flow for the Multidimensional Euler–Poisson System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We establish the existence and stability of subsonic potential flow for the steady Euler–Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler–Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori \({C^{1,\alpha}}\) estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler–Poisson system which enables us to obtain \({C^{1,\alpha}}\) estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler–Poisson system under perturbations of various data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher U.M., Markowich P.A., Pietra P., Schmeiser C.: A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model. Math. Models Methods Appl. Sci. 1(3), 347–376 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bae M., Duan B., Xie C.J.: Subsonic solutions for steady Euler–Poisson system in two-dimensional nozzles. SIAM J. Math. Anal. 46(5), 3455–3480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bae, M., Duan, B., Xie, C.J.: Two dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci. (2015). doi:10.1142/S0218202515500591

  4. Chen D.P., Eisenberg R.S., Jerome J.W., Shu C.W.: A hydrodynamic model of temperature change in open ionic channels. Biophys J. 69, 2304–2322 (1995)

    Article  ADS  Google Scholar 

  5. Chen G.-Q., Feldman M.: Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary cross-sections. Arch. Rational Mech. Anal. 184(2), 185–242 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chen G.-Q., Wang D.-H.: Convergence of shock capturing schemes for the compressible Euler–Poisson equations. Commun. Math. Phys. 179(2), 333–364 (1996)

    Article  ADS  MATH  Google Scholar 

  7. Chen G.-Q., Wang D.-H.: Formation of singularities in compressible Euler–Poisson fluids with heat diffusion and damping relaxation. J. Differ. Equ. 144(1), 44–65 (1998)

    Article  ADS  MATH  Google Scholar 

  8. Chen S.-X., Yuan H.-R.: Transonic shocks in compressible flow passing a duct for three dimensional Euler system. Arch. Rational Mech. Anal. 187(3), 523–556 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Degond P., Markowich P.A.: On a one-dimensional steady-state hydrodynamic model for semiconductors. Appl. Math. Lett. 3(3), 25–29 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Degond, P., Markowich, P.A.: A steady state potential flow model for semiconductors. Ann. Mat. Pura Appl. (4) 165, 87–98 (1993)

  11. Gamba I.M.: Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors. Commun. Partial Differ. Equ. 17(3–4), 553–577 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Gamba I.M., Morawetz C.S.: A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow. Commun. Pure Appl. Math. 49(10), 999–1049 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998)

  14. Guo Y., Strauss W.: Stability of semiconductor states with insulating and contact boundary conditions. Arch. Rational Mech. Anal. 179(1), 1–30 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Han, Q., Lin, F.: Elliptic partial differential equations. Courant Institute of Math. Sci., NYU (1997)

  16. Huang F., Pan R., Yu H.: Large time behavior of Euler–Poisson system for semiconductor. Sci. China Ser. A 51(5), 965–972 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li H., Markowich P.A., Mei M.: Asymptotic behavior of subsonic entropy solutions of the isentropic Euler–Poisson equations. Q. Appl. Math. 60(4), 773–796 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Li J., Xin Z.-P., Yin H.-C.: On transonic shocks in a nozzle with variable end pressures. Commun. Math. Phys. 291(1), 111–150 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Ann. Mat. Pura Appl. (4) 148, 77–99 (1987)

  20. Luo T., Natalini R., Xin Z.-P.: Large time behavior of the solutions to a hydrodynamic model for semiconductors. SIAM J. Appl. Math. 59(3), 810–830 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Luo T., Rauch J., Xie C., Xin Z.-P.: Stability of transonic shock solutions for one-dimensional Euler–Poisson equations. Arch. Rational Mech. Anal. 202(3), 787–827 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Luo T., Xin Z.-P.: Transonic shock solutions for a system of Euler–Poisson equations. Commun. Math. Sci. 10(2), 419–462 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Markowich P.A.: On steady state Euler–Poisson models for semiconductors. Z. Angew. Math. Phys. 42(3), 389–407 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna, 1990

  25. Peng Y.-J., Violet I.: Example of supersonic solutions to a steady state Euler-Poisson system. Appl. Math. Lett. 19(12), 1335–1340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rosini M.D.: Stability of transonic strong shock waves for the one-dimensional hydrodynamic model for semiconductors. J. Differ. Equ. 199(2), 326–351 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Rosini M.D.: A phase analysis of transonic solutions for the hydrodynamic semiconductor model. Q. Appl. Math. 63(2), 251–268 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xin Z.-P., Yin H.-C.: Transonic shock in a nozzle. I. Two-dimensional case. Commun. Pure Appl. Math. 58(8), 999–1050 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang B.: Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices. Commun. Math. Phys. 157(1), 1–22 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoungjean Bae.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, M., Duan, B. & Xie, C. Subsonic Flow for the Multidimensional Euler–Poisson System. Arch Rational Mech Anal 220, 155–191 (2016). https://doi.org/10.1007/s00205-015-0930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0930-6

Keywords

Navigation