Skip to main content
Log in

On Transonic Shocks in a Nozzle with Variable End Pressures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the book, Courant and Friedrichs (Supersonic Flow and Shock Waves. New York: Interscience Publishers, 1948) described the following transonic shock phenomena in a de Laval nozzle: Given the appropriately large receiver pressure p r , if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes and the gas is compressed and slowed down to subsonic speed. The position and the strength of the shock front are automatically adjusted so that the end pressure at the exit becomes p r . When the end pressure p r varies and lies in an appropriate scope, in general, it is expected that a curved transonic shock is still formed in a nozzle. In this paper, we solve this problem for the two-dimensional steady Euler system with a variable exit pressure in a nozzle whose divergent part is an angular sector. Both existence and uniqueness are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Azzam A.: On Dirichlet’s problem for elliptic equations in sectionally smooth n-dimensional domains. SIAM. J. Math. Anal. 11(2), 248–253 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azzam A.: Smoothness properties of mixed boundary value problems for elliptic equations in sectionally smooth n-dimensional domains. Ann. Polon. Math. 40, 81–93 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Bers, L.: Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York/London: John Wiley & Sons, Inc. Chapman & Hall, Ltd. 1958.

  4. Canic S., Keyfitz B.L., Lieberman G.M.: A proof of existence of perturbed steady transonic shocks via a free boundary problem, Comm. Pure Appl. Math. LIII, 484–511 (2000)

    Article  MathSciNet  Google Scholar 

  5. Chen G.-Q., Chen J., Song K.: Transonic nozzle flows and free boundary problems for the full Euler equations. J. Differ. Eq. 229(1), 92–120 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen G., Feldman M.: Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J.A.M.S. 16(3), 461–494 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen S.: Stability on transonic shock fronts in two-dimensional Euler systems. Trans. Amer. Math. Soc. 357(1), 287–308 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Courant R., Friedrichs K.O.: Supersonic Flow and Shock Waves. New York: Interscience Publishers Inc., 1948

    MATH  Google Scholar 

  9. Embid P., Goodman J., Majda A.: Multiple steady states for 1-D transonic flow. SIAM J. Sci. Statist. Comput. 5(1), 21–41 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gilbarg D., Hörmander L.: Intermediate Schauder estimates. Arch. Rational Mech. Anal. 74(4), 297–318 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Gilbarg, D., Tudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften, 224, Berlin-New York: Springer, 1983

  12. Glaz H.M., Liu T.-P.: The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow. Adv. in Appl. Math. 5(2), 111–146 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. John F.: Formation of singularities in one-dimensional nonlinear wave propagation. Comm. Pure Appl. Math. 27, 377–405 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuz’min A.G.: Boundary-Value Problems for Transonic Flow. John Wiley & Sons, LTD, New York (2002)

    Google Scholar 

  15. Li, J., Xin, Z., Yin, H.: The uniqueness of multidimensional transonic shock in a 3-D curved nozzle with the variable end pressures. Preprint, 2007

  16. Lieberman G.M.: Mixed boundary value problems for elliptic and parabolic differential equation of second order. J. Math. Anal. Appl. 113(2), 422–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lieberman G.M.: Oblique derivative problems in Lipschitz domains II. J. reine angew. Math. 389, 1–21 (1988)

    MATH  MathSciNet  Google Scholar 

  18. Liu T.-P.: Nonlinear stability and instability of transonic flows through a nozzle. Comm. Math. Phys. 83(2), 243–260 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Liu T.-P.: Transonic gas flow in a duct of varying area. Arch. Rational Mech. Anal. 80(1), 1–18 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Morawetz C.S.: Potential theory for regular and Mach reflection of a shock at a wedge. Comm. Pure Appl. Math. 47, 593–624 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Morawetz, C.S.: On the nonexistence of continuous transonic flows past profiles, I, II, III. Comm. Pure Appl. Math. 9, 45–68 (1956); 10, 107–131 (1957); 11, 129–144 (1958)

  22. Xin, Z., Yan, W., Yin, H.: Transonic shock problem for the Euler system in a nozzle. Arch. Rational Mech. Anal. (2009). doi:10.1007/s00205-009-0251-8

  23. Xin Z., Yin H.: Transonic shock in a nozzle I, 2-D case. Comm. Pure Appl. Math. LVIII, 999–1050 (2005)

    Article  MathSciNet  Google Scholar 

  24. Xin Z., Yin H.: Three-dimensional transonic shock in a nozzle, Pacific J. Math. 236(1), 139–193 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Xin Z., Yin H.: Transonic shock in a curved nozzle, 2-D and 3-D complete Euler systems. J. D. E. 245(4), 1014–1085 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yuan H.: On transonic shocks in two-dimensional variable-area ducts for steady Euler system. SIAM J. Math. Anal. 38(4), 1343–1370 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zheng Y.: A global solution to a two-dimensional Riemann problem involving shocks as free boundaries. Acta Math. Appl. Sin. Engl. Ser. 19(4), 559–572 (2003)

    MATH  ADS  MathSciNet  Google Scholar 

  28. Zheng Y.: Two-dimensional regular shock reflection for the pressure gradient system of conservation laws. Acta Math. Appl. Sin. Engl. Ser. 22(2), 177–210 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Xin.

Additional information

Communicated by P. Constantin

Supported by the National Natural Science Foundation of China (No.10571082) and the National Basic Research Programm of China (No.2006CB805902).

Supported in part by Zheng Ge Ru Foundation, and Hong Kong RGC Earmarked Research Grants CUHK4028/04P, CUHK4040/06P and RGC Central Allocation Grant CA05/06.SC01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xin, Z. & Yin, H. On Transonic Shocks in a Nozzle with Variable End Pressures. Commun. Math. Phys. 291, 111–150 (2009). https://doi.org/10.1007/s00220-009-0870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0870-9

Keywords

Navigation