Skip to main content
Log in

Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted Lp norms for the whole range of physical adiabatic exponents \({\gamma\in (1, \infty)}\), so that the viscosity approximate solutions satisfy the general Lp compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all \({\gamma\in (1, \infty)}\). The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all \({\gamma\in (1, \infty)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G.-Q.: Remarks on spherically symmetric solutions of the compressible Euler equations. Proc. R. Soc. Edinb. 127A, 243–259 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, G.-Q.: Weak continuity and compactness for nonlinear partial differential equations. Chin. Ann. Math. 36B, 715–736 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, G.-Q., Perepelitsa, M.: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure. Appl. Math. 63, 1469–1504 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, G.-Q., Perepelitsa, M.: Vanishing viscosity solutions of the compressible Euler equations with spherical symmetry and large initial data. Commun. Math. Phys. 338, 771–800 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1962)

    MATH  Google Scholar 

  6. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Springer, Berlin (2016)

    MATH  Google Scholar 

  7. DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1–30 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Embid, P., Goodman, J., Majda, A.: Multiple steady states for 1-D transonic flow. SIAM J. Sci. Stat. Comput. 5, 21–41 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Germain, P., LeFloch, P.G.: Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model. Commun. Pure Appl. Math. 69, 3–61 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glaz, H., Liu, T.-P.: The asymptotic analysis of wave interactions and numerical calculations of transonic nozzle flow. Adv. Appl. Math. 5, 111–146 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glimm, J., Marshall, G., Plohr, B.: A generalized Riemann problem for quasi-one-dimensional gas flow. Adv. Appl. Math. 5, 1–30 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Guderley, G.: Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19(9), 302–311 (1942)

  14. Huang, F., Li, T., Yuan, D.: Global entropy solutions to multi-dimensional isentropic gas dynamics with spherical symmetry. Preprint arXiv:1711.04430 (2017)

  15. LeFloch, P.G., Westdickenberg, M.: Finite energy solutions to the isentropic Euler equations with geometric effects. J. Math. Pures Appl. 88, 389–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, T., Wang, D.: Blowup phenomena of solutions to the Euler equations for compressible fluid flow. J. Differ. Equ. 221, 91–101 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lions, P.-L., Perthame, B., Tadmor, E.: Kinetic formulation for the isentropic gas dynamics and p-system. Commun. Math. Phys. 163, 415–431 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ladyzhenskaja, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. LOMI-AMS, Providence (1968)

    Book  Google Scholar 

  19. Liu, T.-P.: Quasilinear hyperbolic systems. Commun. Math. Phys. 68, 141–172 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Liu, T.-P.: Nonlinear stability and instability of transonic flows through a nozzle. Commun. Math. Phys. 83, 243–260 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Liu, T.-P.: Nonlinear resonance for quasilinear hyperbolic equation. J. Math. Phys. 28, 2593–2602 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Makino, T., Mizohata, K., Ukai, S.: The global weak solutions of compressible Euler equation with spherical symmetry. Jpn. J. Ind. Appl. Math. 9, 431–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Makino, T., Takeno, S.: Initial-boundary value problem for the spherically symmetric motion of isentropic gas. Jpn. J. Ind. Appl. Math. 11, 171–183 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Murat, F.: Compacité par compensation. Ann. Sc. Norm. Super. Pisa Sci. Fis. Mat. 5, 489–507 (1978)

  25. Rosseland, S.: The Pulsation Theory of Variable Stars. Dover Publications Inc., New York (1964)

    MATH  Google Scholar 

  26. Slemrod, M.: Resolution of the spherical piston problem for compressible isentropic gas dynamics via a self-similar viscous limit. Proc. R. Soc. Edinb. 126A, 1309–1340 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tartar, L.: Compensated compactness and applications to partial differential equations, In: Knops R.J. (ed.) Nonlinear Analysis and Mechanics, Herriot-Watt Symposium, Research Notes in Mathematics, vol. 4. Pitman Press (1979)

  28. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang G. Chen.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GQ.G., Schrecker, M.R.I. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows. Arch Rational Mech Anal 229, 1239–1279 (2018). https://doi.org/10.1007/s00205-018-1239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1239-z

Navigation