Skip to main content
Log in

Generalized Wasserstein Distance and its Application to Transport Equations with Source

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this article, we generalize the Wasserstein distance to measures with different masses. We study the properties of this distance. In particular, we show that it metrizes weak convergence for tight sequences. We use this generalized Wasserstein distance to study a transport equation with a source, in which both the vector field and the source depend on the measure itself. We prove the existence and uniqueness of the solution to the Cauchy problem when the vector field and the source are Lipschitzian with respect to the generalized Wasserstein distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Gangbo W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 61(1), 18–53 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio L., Gigli N., Savaré G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics Eth Zurich. Birkhäuser, Basel (2008)

    Google Scholar 

  3. Bressan, A., Piccoli, B.: Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics. AIMS, Springfield, (2007)

  4. Carrillo J.A., Colombo R.M., Gwiazda P., Ulikowska A.: Structured populations, cell growth and measure valued balance laws. J. Differ. Equ. 252, 3245–3277 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Crippa G., Lecureux-Mercier M.: Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. Nonlinear Differ. Equ. Appl. NoDEA 20(3), 523–537 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cristiani E., Piccoli B., Tosin A.: Multiscale Modeling of Granular Flows with Application to Crowd Dynamics. Multiscale Model. Simul. 9, 155–182 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  8. Evers J., Muntean A.: Modeling Micro-Macro Pedestrian Counterflow in Heterogeneous Domains. Nonlinear Phenom. Complex Syst. 14(1), 27–37 (2011)

    ADS  MathSciNet  Google Scholar 

  9. Figalli A., Gigli N.: A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions. Journal de Mathématiques Pures et Appliquées 94(2), 107–130 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gwiazda P., Lorenz T., Marciniak-Czochra A.: A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients. J. Differ. Equ. 248, 2703–2735 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Gwiazda P., Marciniak-Czochra A.: Structured population equations in metric spaces. J. Hyperbolic Differ. Equ. 7(4), 733–773 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Maury B., Roudneff-Chupin A., Santambrogio F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maury B., Roudneff-Chupin A., Santambrogio F., Venel J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485–519 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Piccoli B., Rossi F.: Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Applicandae Mathematicae 124, 73–105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Piccoli, B., Rossi, F.: On properties of the Generalized Wasserstein distance, arXiv:1304.7014 (submitted)

  16. Piccoli B., Tosin A.: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199(3), 707–738 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Piccoli B., Tosin A.: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn. 21(2), 85–107 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Tosin A., Frasca P.: Existence and approximation of probability measure solutions to models of collective behaviors. Netw. Heterog. Media 6(3), 561–596 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften, 2008

  20. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetto Piccoli.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccoli, B., Rossi, F. Generalized Wasserstein Distance and its Application to Transport Equations with Source. Arch Rational Mech Anal 211, 335–358 (2014). https://doi.org/10.1007/s00205-013-0669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0669-x

Keywords

Navigation