Skip to main content
Log in

From Discrete Visco-Elasticity to Continuum Rate-Independent Plasticity: Rigorous Results

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We show that continuum models for ideal plasticity can be obtained as a rigorous mathematical limit starting from a discrete microscopic model describing a visco-elastic crystal lattice with quenched disorder. The constitutive structure changes as a result of two concurrent limiting procedures: the vanishing-viscosity limit and the discrete-to-continuum limit. In the course of these limits a non-convex elastic problem transforms into a convex elastic problem while the quadratic rate-dependent dissipation of visco-elastic lattice transforms into a singular rate-independent dissipation of an ideally plastic solid. In order to emphasize our ideas we employ in our proofs the simplest prototypical system mimicking the phenomenology of transformational plasticity in shape-memory alloys. The approach, however, is sufficiently general that it can be used for similar reductions in the cases of more general plasticity and damage models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Chu C.-H., James R.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Phil. Mag. A 73, 457–497 (1996)

    Article  ADS  Google Scholar 

  2. Aubin J., Cellina A.: Differential Inclusions. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  3. Brandon D., Fonseca I., Swart P.: Oscillations in a dynamical model of phase transitions. Proc. Roy. Soc. Edinburgh Sect. A 131(1), 59–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchitté G., Mielke A., Roubícek T.: A complete-damage problem at small strains. Z. Angew. Math. Phys. (ZAMP) 60(2), 205–236 (2009)

    Article  MATH  Google Scholar 

  5. Bartels, S., Mielke, A., Roubícek, T.: Quasistatic small-strain plasticity in the limit of small hardening and its numerical approximation. SIAM J. Numer. Anal. WIAS preprint 1585 (2010, submitted)

  6. Brokate M., Sprekels J.: Hysteresis and Phase Transitions. Springer, New York (1996)

    Book  MATH  Google Scholar 

  7. Choksi R., Del Piero G., Fonseca I., Owen D.: Structured deformations as energy minimizers in models of fracture and hysteresis. Math. Mech. Solids 4(3), 321–356 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dal Maso G., DeSimone A., Mora M.G., Morini M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Rational Mech. Anal. 189(3), 469–544 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Dal Maso G., DeSimone A., Mora M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Rational Mech. Anal. 180(2), 237–291 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Dehlinger U.: Zur Theorie der Kristallisation reiner Metalle. Annalen der Physik 2, 749–793 (1929)

    Article  ADS  Google Scholar 

  11. Del Piero G., Truskinovsky L.: Elastic bars with cohesive energy. Contin. Mech. Thermodyn. 21, 141–171 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Dal Maso G., Francfort G., Toader R.: Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176, 165–225 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Efendiev Y.R., Truskinovsky L.: Thermalization of a driven bi-stable FPU chain. Contin. Mech. Thermodyn. 22, 679–698 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Fedelich B., Ehrlacher A.: Sur un principe de minimum concernant des matériaux à comportement indépendant du temps physique. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 308(16), 1391–1394 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Fedelich B., Zanzotto G.: Hysteresis in discrete systems of possibly interacting elements with a two well energy. J. Nonlinear Sci. 2(3), 319–342 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Fisher D.: Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B 31, 1396–1427 (1985)

    Article  ADS  Google Scholar 

  17. Francfort G., Garroni A.: A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal. 182, 125–152 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Francfort G., Marigo J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Garroni A., Larsen C.J.: Threshold-based quasi-static brittle damage evolution. Arch. Rational Mech. Anal. 194(2), 585–609 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Grüner G., Zawadowski A., Chaikin P.M.: Nonlinear conductivity and noise due to charge-density-wave depinning in NbSe3. Phys. Rev. Lett. 46(7), 511–515 (1981)

    Article  ADS  Google Scholar 

  21. Hackl K.: Generalized standard media and variational principles in classical and finite strain elastoplasticity. J. Mech. Phys. Solids 45(5), 667–688 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Heslot F., Baumberger T., Perrin P., Caroli B., Caroli C.: Creep stick-slip and dry friction dynamics: experiment and a heuristic model. Phys. Rev. E 49(6), 4973–4988 (1994)

    Article  ADS  Google Scholar 

  23. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, 1950

  24. Kružík M., Mielke A., Roubícek T.: Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40, 389–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kocvara M., Mielke A., Roubícek T.: A rate-independent approach to the delamination problem. Math. Mech. Solids 11, 423–447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knees D., Mielke A., Zanini C.: On the inviscid limit of a model for crack propagation. Math. Models Meth. Appl. Sci. 18, 1529–1569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krejcí, P.: Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear Differential Equations (Chvalatice, 1998). Chapman & Hall/CRC Res. Notes Math., Vol. 404. Chapman & Hall/CRC, Boca Raton, 47–110, 1999

  28. Larsen C., Ortiz M., Richardson C.: Fracture paths from front kinetics: relaxation and rate-independence. Arch. Rational Mech. Anal. 193(3), 539–583 (2007)

    Article  MathSciNet  Google Scholar 

  29. Mainik A., Mielke A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19(3), 221–248 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Menon G.: Gradient systems with wiggly energies and related averaging problems. Arch. Rational Mech. Anal. 162, 193–246 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Middleton A.A.: Asymptotic uniqueness of the sliding state for charge-density waves. Phys. Rev. Lett. 68(5), 670–673 (1992)

    Article  ADS  Google Scholar 

  32. Mielke A.: Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. Roy. Soc. Edinburgh Sect. A 129, 85–123 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mielke A.: Evolution in rate-independent systems, Chap. 6. In: Dafermos, C., Feireisl, E. (eds) Handbook of Differential Equations, Evolutionary Equations, Vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)

    Google Scholar 

  34. Mielke, A.: Differential, energetic and metric formulations for rate-independent processes. In Ambrosio, L., Savaré, G. (eds.) Nonlinear PDEs and Applications. Springer, Berlin, 87–170, 2011. Lectures given at C.I.M.E. Summer School in Cetraro, Italy, June 23–28, 2008. Lecture Notes in Mathematics, Vol. 2028

  35. Mielke A., Theil F.: A mathematical model for rate-independent phase transformations with hysteresis. In: Alber, H.-D., Balean, R., Farwig, R. (eds) Proceedings of the Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, pp. 117–129. Shaker-Verlag, Aachen (1999)

    Google Scholar 

  36. Moreau, J.-J.: On unilateral constraints, friction and plasticity. In: New Variational Techniques in Mathematical Physics (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1973). Edizioni Cremonese, Rome, 171–322, 1974

  37. Mielke A., Roubícek T., Stefanelli U.: Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31, 387–416 (2008)

    Article  MATH  Google Scholar 

  38. Mielke A., Theil F., Levitas V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162, 137–177 (2002) (Essential Science Indicator: Emerging Research Front, August 2006.)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Müller I., Villaggio P.: A model for an elastic plastic body. Arch. Rational Mech. Anal. 65(1), 25–46 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Negri M.: From rate-dependent to rate-independent brittle crack propagation. J. Elasticity 98, 159–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Neshtadt, A.I.: Prolongation of the loss of stability in the case of dynamic bifurcations. I. Differentsial’nye Uravneniya 23(12), 2060–2067, 2204 (1987). Russian Translation in Differ. Equ. 23, 1385–1390 (1987)

  42. Neshtadt, A.I.: Prolongation of the loss of stability in the case of dynamic bifurcations. II. Differentsial’nye Uravneniya 24(2), 226–233, 364 (1988). Russian Translation in Differ. Equ. 24, 171–176 (1988)

  43. Nguyen, Q., Radenkovic, D.: Stability of equilibrium in elastic plastic solids. Lecture Notes in Mathematics, Vol. 503, pp. 403–414, 1976

  44. Onsager L., Machlup S.: Fluctuations and irreversible processes. Phys. Rev. 91(6), 1505–1512 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Ortiz M., Repetto E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Ponter A., Bataille J., Kestin J.: A thermodynamic model for the time dependent plastic deformation of solids. J. Mécanique 18, 511–539 (1979)

    MATH  Google Scholar 

  47. Petryk H.: Thermodynamic conditions for stability in materials with rate-independent dissipation. Phil. Trans. Roy. Soc. A 363, 2479–2515 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Prandtl L.: Gedankenmodel zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85–106 (1928)

    Article  MATH  Google Scholar 

  49. Pérez-Reche F.J., Truskinovsky L., Zanzotto G.: Driving-induced crossover: from classical criticality to self-organized criticality. Phys. Rev. Lett. 101(23), 230601 (2008)

    Article  Google Scholar 

  50. Pérez-Reche F.J., Truskinovsky L., Zanzotto G.: Martensitic transformations: from continuum mechanics to spin models and automata. Contin. Mech. Thermodyn. 21, 17–26 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  51. Puglisi G., Truskinovsky L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48(1), 1–27 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Puglisi G., Truskinovsky L.: A mechanism of transformational plasticity. Contin. Mech. Thermodyn. 14, 437–457 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Puglisi G., Truskinovsky L.: Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53, 655–679 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Roubícek T.: Evolution model for martensitic phase transformation in shape-memory alloys. Interfaces Free Bound. 4, 111–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Roubícek T., Scardia L., Zanini C.: Quasistatic delamination problem. Contin. Mech. Thermodyn. 21, 223–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Salman O.U., Truskinovsky L.: Minimal integer automaton behind crystal plasticity. Phys. Rev. Lett. 106(17), 175503 (2011)

    Article  ADS  Google Scholar 

  57. Sullivan T.J., Koslowski M., Theil F., Ortiz M.: On the behaviour of dissipative systems in contact with a heat bath: application to Andrade creep. J. Mech. Phys. Solids 57(7), 1058–1077 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Stratonovich, R.: Oscillator synchronization in the presence of noise. Radiotekhnika i elektronika 3, 497 (1958). English translation in “P. I. Kuznetsov, R. L Stratonovich, V. I. Tikhonov (eds.) Non-Linear Transformations of Stochastic Processes. Pergamon press, Oxford, 1965”

  59. Sullivan, T.J.: Analysis of gradient descents in random energies and heat baths. PhD thesis, Department of Mathematics, University of Warwick, 2009

  60. Tartar, L.: Oscillations and asymptotic behaviour for two semilinear hyperbolic systems. In Dynamics of Infinite-Dimensional Systems (Lisbon, 1986). Springer, Berlin, 341–356, 1987

  61. Theil F.: Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress–strain relation. Arch. Rational Mech. Anal. 144(1), 47–78 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Theil F.: Relaxation of rate-independent evolution problems. Proc. Roy. Soc. Edinburgh Sect. A 132, 463–481 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. Truskinovsky L., Vainchtein A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Math. Anal. 66(2), 533–553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin, 1994

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A., Truskinovsky, L. From Discrete Visco-Elasticity to Continuum Rate-Independent Plasticity: Rigorous Results. Arch Rational Mech Anal 203, 577–619 (2012). https://doi.org/10.1007/s00205-011-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0460-9

Keywords

Navigation