Skip to main content
Log in

High-Frequency Asymptotics and One-Dimensional Stability of Zel’dovich–von Neumann–Döring Detonations in the Small-Heat Release and High-Overdrive Limits

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We establish one-dimensional spectral, or “normal modes”, stability of Zel’dovich–von Neumann–Döring detonations in the small heat release limit and the related high overdrive limit with heat release and activation energy held fixed, verifying numerical observations made by Erpenbeck in the 1960s. The key technical points are a strategic rescaling of parameters converting the infinite overdrive limit to a finite, regular perturbation problem, and a careful high-frequency analysis depending uniformly on model parameters. The latter recovers and extends to arbitrary amplitudes the important result of high-frequency stability established by Erpenbeck by somewhat different techniques. Notably, the techniques used here yield quantitative estimates well suited for numerical stability investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, B., Zumbrun, K.: A numerical investigation of stability of ZND detonations for Majda’s model. Preprint (2010)

  2. Coddington E.A., Levinson N.: Theory of Ordinary Differential Equations, pp. 92. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  3. Coppel W.A.: Stability and Asymptotic Behavior of Differential Equations. D.C. Heath and Co.,, Boston (1965)

    MATH  Google Scholar 

  4. Costanzino N., Jenssen K., Lyng G., Williams M.: Existence and stability of curved multidimensional detonation fronts. Indiana Univ. Math. J. 56(3), 1405–1461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Döring W.: Uber Detonationsvorgang in Gasen (On detonation processes in gases). Ann. Phys. 43, 421–436 (1943)

    Article  Google Scholar 

  6. Erpenbeck J.J.: Stability of steady-state equilibrium detonations. Phys. Fluids 5, 604–614 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  7. Erpenbeck, J.J.: Stability of idealized one-reaction detonations. Phys. Fluids 7 (1964)

  8. Erpenbeck J.J.: Detonation stability for disturbances of small transverse wave length. Phys. Fluids 9, 1293–1306 (1966)

    Article  ADS  MATH  Google Scholar 

  9. Erpenbeck J.J.: Stability of step shocks. Phys. Fluids 5(10), 1181–1187 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Gardner R., Zumbrun K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  11. Humpherys J., Lafitte O., Zumbrun K.: Stability of viscous shock profiles in the high Mach number limit. Commun. Math. Phys. 293(1), 1–36 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Humpherys J., Lyng G., Zumbrun K.: Spectral stability of ideal gas shock layers. Arch. Ration. Mech. Anal. 194(3), 1029–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Humpherys, J., Zumbrun, K.: Numerical stability analysis of detonation waves in ZND. Preprint (2010)

  14. Humpherys J., Zumbrun K.: An efficient shooting algorithm for Evans function calculations in large systems. Phys. D 220(2), 116–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jenssen H.K., Lyng G., Williams M.: Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54, 1–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jung, S., Yao, J.: Stability of ZND detonations for Majda’s model. Q. Appl. Math. (2011, to appear)

  17. Kato T.: Perturbation Theory for Linear Pperators. Springer, Berlin (1985)

    Google Scholar 

  18. Majda A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–91 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175(826), vi + 107 (2005)

  21. Plaza R., Zumbrun K.: An Evans function approach to spectral stability of small-amplitude shock profiles. J. Discrete Control Dyn. Syst. 10, 885–924 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. von Neumann, J.: Theory of detonation waves. Progress Report to the National Defense Research Committee Div. B, OSRD-549. In: Taub, A.H., von Neumann, J. (eds.) Collected Works, 1903–1957, vol. 6. Pergamon Press, New York (1963). ISBN 9780080095660

  23. Zeldovich Y.B., Ya B.: On the theory of the propagation of detonations on gaseous system. Zh. Eksp. Teor. Fiz. 10, 542–568 (1940)

    Google Scholar 

  24. Zumbrun K.: Stability of detonation profiles in the ZND limit. Arch. Ration. Mech. Anal. 200(1), 141–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zumbrun K.: A local greedy algorithm and higher order extensions for global numerical continuation of analytically varying subspaces. Q. Appl. Math. 68(3), 557–561 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Zumbrun, K.: Numerical error analysis for Evans function computations: a numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. Preprint (2009)

  27. Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. In: Marcati, P. (ed.) Hyperbolic Systems of Balance Laws, CIME School Lectures Notes. Lecture Note in Mathematics, vol. 1911. Springer, Berlin, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Zumbrun.

Additional information

Communicated by C. Dafermos

Research of K. Zumbrun was partially supported under NSF Grants no. DMS-0300487 and DMS-0801745.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zumbrun, K. High-Frequency Asymptotics and One-Dimensional Stability of Zel’dovich–von Neumann–Döring Detonations in the Small-Heat Release and High-Overdrive Limits. Arch Rational Mech Anal 203, 701–717 (2012). https://doi.org/10.1007/s00205-011-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0457-4

Keywords

Navigation