Skip to main content
Log in

Novel neurotoxic peptides from Protopalythoa variabilis virtually interact with voltage-gated sodium channel and display anti-epilepsy and neuroprotective activities in zebrafish

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

We previously reported a novel toxic peptide identified from the anthozoan Protopalythoa variabilis transcriptome which is homologous to a novel structural type of sodium channel toxin isolated from a parental species (Palythoa caribaeorum). The peptide was named, according to its homologous, as Pp V-shape α-helical peptide (PpVα) in the present study. Through molecular docking and dynamics simulation, linear and hairpin folded PpVα peptides were shown to be potential voltage-gated sodium channel blockers. Nowadays, sodium channel blockers have been the mainstream of the pharmacological management of epileptic seizures. Also, sodium channel blockers could promote neuronal survival by reducing sodium influx and reducing the likelihood of calcium importation resulting in suppressing microglial activation and protecting dopaminergic neurons from degeneration. The folded PpVα peptide could decrease pentylenetetrazol (PTZ)-induced c-fos and npas4a expression level leading to reverse PTZ-induced locomotor hyperactivity in zebrafish model. In vitro, the folded PpVα peptide protected PC12 cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via activating heme oxygenase-1 (HO-1) and attenuating inducible nitric oxide synthase (iNOS) expression. In vivo, PpVα peptide suppressed the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish and, importantly, prevented the 6-OHDA-induced excessive ROS generation and subsequent dopaminergic neurons loss. This study indicates that the single S–S bond folded PpVα peptide arises as a new structural template to develop sodium channel blockers and provides an insight on the peptide discovery from cnidarian transcriptome to potentially manage epilepsy and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal N, Alonso A, Ragsdale DS (2003) Increased persistent sodium currents in rat entorhinal cortex layer V neurons in a post-status epilepticus model of temporal lobe epilepsy. Epilepsia 44(12):1601–1604

    Article  PubMed  Google Scholar 

  • Anichtchik OV et al (2004) Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88(2):443–453

    Article  CAS  PubMed  Google Scholar 

  • Athauda D, Foltynie T (2015) The ongoing pursuit of neuroprotective therapies in Parkinson disease. Nat Rev Neurol 11(1):25–40

    Article  CAS  PubMed  Google Scholar 

  • Averaimo S et al (2010) Chloride intracellular channel 1 (CLIC1): sensor and effector during oxidative stress. FEBS Lett 584(10):2076–2084

    Article  CAS  PubMed  Google Scholar 

  • Bagal SK et al (2015) Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9(6):360–366

    Article  Google Scholar 

  • Baraban SC et al (2005) Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3):759–768

    Article  CAS  PubMed  Google Scholar 

  • Baxendale S et al (2012) Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 5(6):773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghmans S et al (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75(1):18–28

    Article  CAS  PubMed  Google Scholar 

  • Blumenfeld H et al (2009) Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia 50(1):44–55

    Article  PubMed  Google Scholar 

  • Brawek B, Garaschuk O (2014) Network-wide dysregulation of calcium homeostasis in Alzheimer’s disease. Cell Tissue Res 357(2):427–438

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P et al (2003) Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann Neurol 53(6):693–702

    Article  CAS  PubMed  Google Scholar 

  • Camproux AC, Gautier R, Tuffery P (2004) A hidden markov model derived structural alphabet for proteins. J Mol Biol 339(3):591–605

    Article  CAS  PubMed  Google Scholar 

  • Carstens BB et al (2016) Structure-activity studies of cysteine-rich alpha-conotoxins that inhibit high-voltage-activated calcium channels via GABA(B) receptor activation reveal a minimal functional motif. Angew Chem Int Ed Engl 55(15):4692–4696

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International union of pharmacology. XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397–409

    Article  CAS  PubMed  Google Scholar 

  • Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266

    Article  PubMed  Google Scholar 

  • Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Choudhury ME et al (2011) Zonisamide-induced long-lasting recovery of dopaminergic neurons from MPTP-toxicity. Brain Res 1384:170–178

    Article  CAS  PubMed  Google Scholar 

  • Choudhury ME et al (2012) Zonisamide up-regulated the mRNAs encoding astrocytic anti-oxidative and neurotrophic factors. Eur J Pharmacol 689(1–3):72–80

    Article  CAS  PubMed  Google Scholar 

  • Cui G et al (2013) A novel Danshensu derivative confers cardioprotection via PI3K/Akt and Nrf2 pathways. Int J Cardiol 168(2):1349–1359

    Article  PubMed  Google Scholar 

  • de Lera Ruiz M, Kraus RL (2015) Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem 58(18):7093–7118

    Article  CAS  PubMed  Google Scholar 

  • Dutton JL et al (2002) A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. J Biol Chem 277(50):48849–48857

    Article  CAS  PubMed  Google Scholar 

  • Escayg A et al (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 24(4):343–345

    Article  CAS  PubMed  Google Scholar 

  • Faber CG et al (2012) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Focken T et al (2016) Discovery of aryl sulfonamides as isoform-selective inhibitors of NaV1.7 with efficacy in rodent pain models. ACS Med Chem Lett 7(3):277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghahremanpour MM et al (2014) MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinformatics 30(3):439–441

    Article  CAS  PubMed  Google Scholar 

  • Gordon D et al (2007) The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon 49(4):452–472

    Article  CAS  PubMed  Google Scholar 

  • Grau CM, Greene LA (2012) Use of PC12 cells and rat superior cervical ganglion sympathetic neurons as models for neuroprotective assays relevant to Parkinson’s disease. Methods Mol Biol 846:201–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene LA (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol 78(3):747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimer P et al (2018) Conformational mu-conotoxin PIIIA isomers revisited: impact of cysteine pairing on disulfide-bond assignment and structure elucidation. Anal Chem 90(5):3321–3327

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CP (2008) Redox modulation of A-type K+ currents in pain-sensing dorsal root ganglion neurons. Biochem Biophys Res Commun 370(3):445–449

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CJ et al (2014) Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med 67:159–170

    Article  CAS  PubMed  Google Scholar 

  • Huang C et al (2016) The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) predicts a basal repertoire of toxin-like and venom-auxiliary polypeptides. Genome Biol Evol 8(9):3045–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Iwata A et al (2004) Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 24(19):4605–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo S et al (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  CAS  PubMed  Google Scholar 

  • Kalia J et al (2015) From foe to friend: using animal toxins to investigate ion channel function. J Mol Biol 427(1):158–175

    Article  CAS  PubMed  Google Scholar 

  • Kearney JA et al (2001) A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102(2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Kinarivala N et al (2017) Passage variation of PC12 cells results in inconsistent susceptibility to externally induced apoptosis. ACS Chem Neurosci 8(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Klein JP et al (2004) Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy. Brain Res 1000(1–2):102–109

    Article  CAS  PubMed  Google Scholar 

  • Lazcano-Pérez F et al (2014) A purified palythoa venom fraction delays sodium current inactivation in sympathetic neurons. Toxicon 82:112–116

    Article  CAS  PubMed  Google Scholar 

  • Lazcano-Pérez F et al (2016) Activity of Palythoa caribaeorum venom on voltage-gated ion channels in mammalian superior cervical ganglion neurons. Toxins (Basel) 8(5):135

    Article  CAS  Google Scholar 

  • Lenkey N et al (2010) Classification of drugs based on properties of sodium channel inhibition: a comparative automated patch-clamp study. PLoS One 5(12):e15568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PW, Bean BP (2014) Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons. J Neurosci 34(14):4991–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Long SM et al (2014) Identification of marine neuroactive molecules in behaviour-based screens in the larval zebrafish. Mar Drugs 12(6):3307–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lossin C et al (2002) Molecular basis of an inherited epilepsy. Neuron 34(6):877–884

    Article  CAS  PubMed  Google Scholar 

  • Lukacs P et al (2018) Non-blocking modulation contributes to sodium channel inhibition by a covalently attached photoreactive riluzole analog. Sci Rep 8(1):8110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malin SA, Nerbonne JM (2000) Elimination of the fast transient in superior cervical ganglion neurons with expression of KV4.2W362F: molecular dissection of IA. J Neurosci 20(14):5191–5199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel G et al (1988) Selective induction of brain type II Na+ channels by nerve growth factor. Proc Natl Acad Sci USA 85(3):924–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantegazza M et al (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9(4):413–424

    Article  CAS  PubMed  Google Scholar 

  • Maupetit J, Derreumaux P, Tufféry P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31(4):726–738

    CAS  PubMed  Google Scholar 

  • Monge-Fuentes V et al (2015) Neuroactive compounds obtained from arthropod venoms as new therapeutic platforms for the treatment of neurological disorders. J Venom Anim Toxins Incl Trop Dis 21:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussulini BH et al (2013) Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS One 8(1):e54515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagoshi N, Nakashima H, Fehlings MG (2015) Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20(5):7775–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naziroglu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca(2)(+) signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Pardo LA, Stuhmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Payandeh J, Hackos DH (2018) Selective ligands and drug discovery targeting the voltage-gated sodium channel Nav1.7. Handb Exp Pharmacol 246:271–306

    Article  CAS  PubMed  Google Scholar 

  • Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53(9):1791–1806

    Article  CAS  PubMed  Google Scholar 

  • Persson AK et al (2013) Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury. J Neurosci 33(49):19250–19261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce B, Tong W, Weng Z (2005) M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21(8):1472–1478

    Article  CAS  PubMed  Google Scholar 

  • Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9):e24657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda SS et al (2014) Spider venomics: implications for drug discovery. Future Med Chem 6(15):1699–1714

    Article  CAS  PubMed  Google Scholar 

  • Pronk S et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889(1–2):316–330

    Article  CAS  PubMed  Google Scholar 

  • Sadeghian M et al (2016) Neuroprotection by safinamide in the 6-hydroxydopamine model of Parkinson’s disease. Neuropathol Appl Neurobiol 42(5):423–435

    Article  CAS  PubMed  Google Scholar 

  • Scallet AC et al (2004) Electroencephalographic, behavioral, and c-fos responses to acute domoic acid exposure. Neurotoxicol Teratol 26(2):331–342

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesti F, Liu S, Cai SQ (2010) Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 20(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Shafer TJ, Atchison WD (1991) Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 12(3):473–492

    CAS  PubMed  Google Scholar 

  • Shao J et al (2016) MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol Pain 12:1744806916671523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y et al (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10(10):4745–4758

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MA et al (2008) Influence of cytotoxic doses of 4-hydroxynonenal on selected neurotransmitter receptors in PC-12 cells. Toxicol In Vitro 22(7):1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Blumenthal KM (2007) Site-3 sea anemone toxins: molecular probes of gating mechanisms in voltage-dependent sodium channels. Toxicon 49(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Sousa SR, Vetter I, Lewis RJ (2013) Venom peptides as a rich source of cav2.2 channel blockers. Toxins (Basel) 5(2):286–314

    Article  CAS  Google Scholar 

  • Striessnig J et al (2014) L-type Ca(2+) channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal 3(2):15–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233(1–2):3–13

    Article  CAS  PubMed  Google Scholar 

  • Tietze AA et al (2012) Structurally diverse mu-conotoxin PIIIA isomers block sodium channel NaV 1.4. Angew Chem Int Ed Engl 51(17):4058–4061

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Aral JJ et al (1997) Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci USA 94(4):1527–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  CAS  Google Scholar 

  • Vreugdenhil M et al (2004) Persistent sodium current in subicular neurons isolated from patients with temporal lobe epilepsy. Eur J Neurosci 19(10):2769–2778

    Article  PubMed  Google Scholar 

  • Wang W et al (2011) Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 7:16

    PubMed  PubMed Central  Google Scholar 

  • Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol 4(3):159–169

    Article  CAS  PubMed  Google Scholar 

  • Wei H et al (2000) β-Amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment. Eur J Pharmacol 392(3):117–123

    Article  CAS  PubMed  Google Scholar 

  • Weidinger A et al (2015) Vicious inducible nitric oxide synthase-mitochondrial reactive oxygen species cycle accelerates inflammatory response and causes liver injury in rats. Antioxid Redox Signal 22(7):572–586

    Article  CAS  PubMed  Google Scholar 

  • Westerfield M (2000) A guide for the laboratory use of zebrafish (Danio rerio) Eugene. University of Oregon Press, Eugene, p 1.1

    Google Scholar 

  • Wilson JR, Fehlings MG (2014) Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg 81(5–6):825–829

    Article  PubMed  Google Scholar 

  • Winter MJ et al (2008) Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods 57(3):176–187

    Article  CAS  PubMed  Google Scholar 

  • Wu EL et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R et al (2007) Generalized epilepsy with febrile seizures plus-associated sodium channel beta1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function. Neuroscience 148(1):164–174

    Article  CAS  PubMed  Google Scholar 

  • Yurekli VA et al (2013) Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol Neurobiol 33(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZJ et al (2012) Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell Mol Neurobiol 32(1):27–40

    Article  PubMed  Google Scholar 

  • Zhang LQ et al (2015) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3beta pathways. J Ethnopharmacol 170:8–15

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) Disulfide bridges: bringing together frustrated structure in a bioactive peptide. Biophys J 110(8):1744–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research at University of Macau was supported by grants from the Science and Technology Development Fund (FDCT) of Macao SAR (Ref. no. 069/2015/A2 and no. 134/2014/A3) and Research Committee, University of Macau (MYRG2016-00133-ICMS-QRCM, MYRG2015-00182-ICMS-QRCM, and MYRG2016-00129-ICMS-QRCM). Research work at the Institute for Marine Sciences, Federal University of Ceará, was supported by the Brazilian National Council for Scientific and Technological Development—CNPq, under the auspices of the Marine Biotechnology Network Initiative (Grant no. 408835/2013-3 to G.R.-B.), the Ministry of Science, Technology, Innovation & Communication (MCTI-C) of the Federal Government of Brazil. J.-E.RLM was a former doctoral fellowship recipient from the Coordination for the improvement of Higher Education Personnel (CAPES, the Ministry of Education, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gandhi Rádis-Baptista or Simon Ming-Yuen Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 979 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Li, S., Siu, S.W.I. et al. Novel neurotoxic peptides from Protopalythoa variabilis virtually interact with voltage-gated sodium channel and display anti-epilepsy and neuroprotective activities in zebrafish. Arch Toxicol 93, 189–206 (2019). https://doi.org/10.1007/s00204-018-2334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2334-5

Keywords

Navigation