Skip to main content

Advertisement

Log in

Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

It is well known that high fluoride results in low fertility. Epididymis is the important place for spermatozoa maturation, which is essential for successful fertilization. In the previous studies, fluoride was reported to damage the epididymal structure of mouse and rabbit. However, the mechanism underlying sodium fluoride (NaF)-induced epididymal toxicity has not yet been well elucidated. The aim of this study is to explore the global protein alterations in epididymis of mice exposed to NaF using the iTRAQ technique. Results showed that 211 proteins were differentially expressed in both 25 and 100 mg/L NaF groups. Some of them have been proved to be important for reproduction, such as low-density lipoprotein receptor-related protein 2 (Lrp2), cytochrome c, testis-specific (Cyct), sorbitol dehydrogenase (Sord), glutathione S-transferases (GSTs), acrosin, beta-defensin 126, cysteine-rich secretory protein (Crisp) 1, and Crisp2. Gene ontology (GO) analysis suggested cellular process, organelle and catalytic activity account for high percent and number of differentially expressed proteins. 171 pathways were found after the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, among which the representative maps, such as ribosome, focal adhesion, and phagosome, were involved. Different functional categories post-translational modification, protein turnover, chaperones; translation, ribosomal structure and biogenesis; cytoskeleton; energy production and conversion are implicated in the Cluster of Orthologous Groups (COG) of proteins analysis. Subsequently, the effect of NaF on the antioxidant activity in epididymis, especially glutathione and glutathione-related enzymes, was evaluated. Results exhibited high fluoride caused low total antioxidant capacity (T-AOC), high methane dicarboxylic aldehyde (MDA), decreased reduced glutathione (GSH), and the glutathione-related enzymes [GSH peroxidase (GPx), GSH reductase (GR), and GSH S-transferase (GST)] changes in activity, protein, and mRNA expressions. In summary, NaF decreased the antioxidant activity of epididymis, especially glutathione and glutathione-related enzymes, as well as iTRAQ results, providing new explanations for the low sperm quality induced by fluoride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adham IM, Nayernia K, Engel W (1997) Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev 46:370–376

    Article  CAS  PubMed  Google Scholar 

  • Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188:319–333

    Article  CAS  PubMed  Google Scholar 

  • Chinoy NJ, Narayana MV (1994) In vitro fluoride toxicity in human spermatozoa. Reprod Toxicol 8:155–159

    Article  CAS  PubMed  Google Scholar 

  • Chinoy NJ, Sequeira E (1989) Effects of fluoride on the histoarchitecture of reproductive organs of the male mouse. Reprod Toxicol 3:261–267

    Article  CAS  PubMed  Google Scholar 

  • Cornwall GA (2009) New insights into epididymal biology and function. Hum Reprod Update 15:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dacheux JL, Dacheux F (2014) New insights into epididymal function in relation to sperm maturation. Reproduction 147:R27–R42

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Xu W, Zhao X, Zhang M, Zhang D, Nie D, Bao M, Wang Z, Wang L, Qiao Z (2016) Protein profile screening: reduced expression of Sord in the mouse epididymis induced by nicotine inhibits tyrosine phosphorylation level in capacitated spermatozoa. Reproduction 151:227–237

    Article  CAS  PubMed  Google Scholar 

  • de Haan JB, Stefanovic N, Nikolic-Paterson D, Scurr LL, Croft KD, Mori TA, Hertzog P, Kola I, Atkins RC, Tesch GH (2005) Kidney expression of glutathione peroxidase-1 is not protective against streptozotocin-induced diabetic nephropathy. Am J Physiol Renal Physiol 289:F544–F551

    Article  PubMed  Google Scholar 

  • Doull J, Boekelheide K, Farishian BG, Isaacson RL, Klotz JB, Kumar JV, Limeback H, Poole C, Puzas JE, Reed N-MR, Thiessen KM, Webster TF (2006) Fluoride in drinking water: a scientific review of EPA’s standards. National Academies Press, Washington

    Google Scholar 

  • Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250:70–79

    Article  CAS  PubMed  Google Scholar 

  • Dvoráková-Hortová K, Sandera M, Jursová M, Vasinová J, Peknicová J (2008) The influence of fluorides on mouse sperm capacitation. Anim Reprod Sci 108:157–170

    Article  PubMed  Google Scholar 

  • Elbetieha A, Darmani H, Al-Hiyasat AS (2000) Fertility effects of sodium fluoride in male mice. Fluoride 33:128–134

    CAS  Google Scholar 

  • Fernandez-Fuertes B, Narciandi F, O’Farrelly C, Kelly AK, Fair S, Meade KG, Lonergan P (2016) Cauda epididymis-specific beta-defensin 126 promotes sperm motility but not fertilizing ability in cattle. Biol Reprod 95:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Freni SC (1994) Exposure to high fluoride concentrations in drinking water is associated with decreased birth rates. J Toxicol Environ Health 42:109–121

    Article  CAS  PubMed  Google Scholar 

  • Gibbs GM, Bianco DM, Jamsai D, Herlihy A, Ristevski S, Aitken RJ, Kretser DM, O’Bryan MK (2007) Cysteine-rich secretory protein 2 binds to mitogen-activated protein kinase kinase kinase 11 in mouse sperm. Biol Reprod 77:108–114

    Article  CAS  PubMed  Google Scholar 

  • Hermo L, Lustig M, Lefrancois S, Argraves WS, Morales CR (1999) Expression and regulation of LRP-2/megalin in epithelial cells lining the efferent ducts and epididymis during postnatal development. Mol Reprod Dev 53:282–293

    Article  CAS  PubMed  Google Scholar 

  • Honda A, Siruntawineti J, Baba T (2002) Role of acrosomal matrix proteases in sperm-zona pellucida interactions. Hum Reprod Update 8:405–412

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo-Vega JA, Sanchez-Gutierrez M, Del Razo LM (2008) Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss. Toxicol Appl Pharmacol 230:352–357

    Article  CAS  PubMed  Google Scholar 

  • Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112:2454–2466

    Article  CAS  PubMed  Google Scholar 

  • Kensler KH, Slocum SL, Chartoumpekis DV, Dolan PM, Johnson NM, Ilic Z, Crawford DR, Sell S, Groopman JD, Kensler TW, Egner PA (2014) Genetic or pharmacologic activation of Nrf2 signaling fails to protect against aflatoxin genotoxicity in hypersensitive GSTA3 knockout mice. Toxicol Sci 139:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kwon WS, Rahman MS, Lee JS, Yoon SJ, Park YJ, You YA, Pang MG (2015) Effect of sodium fluoride on male mouse fertility. Andrology 3:544–551

    Article  CAS  PubMed  Google Scholar 

  • Knapen MF, Zusterzeel PL, Peters WH, Steegers EA (1999) Glutathione and glutathione-related enzymes in reproduction. A review. Eur J Obstet Gynecol Reprod Biol 82:171–184

    Article  CAS  PubMed  Google Scholar 

  • Koppers AJ, Reddy T, O’Bryan MK (2011) The role of cysteine-rich secretory proteins in male fertility. Asian J Androl 13:111–117

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Susheela AK (1995) Effects of chronic fluoride toxicity on the morphology of ductus epididymis and the maturation of spermatozoa of rabbit. Int J Exp Pathol 76:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanzafame FM, La Vignera S, Vicari E, Calogero AE (2009) Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 19:638–659

    Article  CAS  PubMed  Google Scholar 

  • Leong S, Nunez AC, Lin MZ, Crossett B, Christopherson RI, Baxter RC (2012) iTRAQ-based proteomic profiling of breast cancer cell response to doxorubicin and TRAIL. J Proteome Res 11:3561–3572

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Zhang SN, Wang KX, Liu SM, Lu F (2014) iTRAQ-based quantitative proteomics study on the neuroprotective effects of extract of Acanthopanax senticosus harm on SH-SY5Y cells overexpressing A53T mutant alpha-synuclein. Neurochem Int 72:37–47

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long H, Jin Y, Lin M, Sun Y, Zhang L, Clinch C (2009) Fluoride toxicity in the male reproductive system. Fluoride 42:260–276

    CAS  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Wang S, Sun Z, Niu R, Wang J (2014) In vivo influence of sodium fluoride on sperm chemotaxis in male mice. Arch Toxicol 88:533–539

    Article  CAS  PubMed  Google Scholar 

  • Manaskova-Postlerova P, Cozlova N, Dorosh A, Sulc M, Guyonnet B, Jonakova V (2016) Acrosin inhibitor detection along the boar epididymis. Int J Biol Macromol 82:733–739

    Article  CAS  PubMed  Google Scholar 

  • Narciandi F, Fernandez-Fuertes B, Khairulzaman I, Jahns H, King D, Finlay EK, Mok KH, Fair S, Lonergan P, Farrelly CO, Meade KG (2016) Sperm-coating beta-defensin 126 is a dissociation-resistant dimer produced by epididymal epithelium in the bovine reproductive tract. Biol Reprod 95:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Narisawa S, Hecht NB, Goldberg E, Boatright KM, Reed JC, Millan JL (2002) Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy. Mol Cell Biol 22:5554–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu R, Wang J, Sun Z, Xue X, Yan X, Zhang J (2015) Transcriptional regulatory dynamics of the hypothalamic–pituitary–testicular axis in male mice exposed to fluoride. Environ Toxicol Pharmacol 40:557–562

    Article  CAS  PubMed  Google Scholar 

  • Papp S, Robaire B, Hermo L (1995) Immunocytochemical localization of the Ya, Yc, Yb1, and Yb2 subunits of glutathione S-transferases in the testis and epididymis of adult rats. Microsc Res Tech 30:1–23

    Article  CAS  PubMed  Google Scholar 

  • Perumal E, Paul V, Govindarajan V, Panneerselvam L (2013) A brief review on experimental fluorosis. Toxicol Lett 223:236–251

    Article  CAS  PubMed  Google Scholar 

  • Roberts KP, Ensrud KM, Wooters JL, Nolan MA, Johnston DS, Hamilton DW (2006) Epididymal secreted protein Crisp-1 and sperm function. Mol Cell Endocrinol 250:122–127

    Article  CAS  PubMed  Google Scholar 

  • Roberts KP, Johnston DS, Nolan MA, Wooters JL, Waxmonsky NC, Piehl LB, Ensrud-Bowlin KM, Hamilton DW (2007) Structure and function of epididymal protein cysteine-rich secretory protein-1. Asian J Androl 9:508–514

    Article  CAS  PubMed  Google Scholar 

  • Schulz JA, Lamb AR (1925) The effect of fluorine as sodium fluoride on the growth and reproduction of albino rats. Science 61:93–94

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R, Mieusset R (2016) The human epididymis: its function in sperm maturation. Hum Reprod Update 22:574–587

    Article  PubMed  Google Scholar 

  • Sun Z, Niu R, Su K, Wang B, Wang J, Zhang J (2010) Effects of sodium fluoride on hyperactivation and Ca2 + signaling pathway in sperm from mice: an in vivo study. Arch Toxicol 84:353–361

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Zhang W, Xue X, Zhang Y, Niu R, Li X, Li B, Wang X, Wang J (2016) Fluoride decreased the sperm ATP of mice through inhabiting mitochondrial respiration. Chemosphere 144:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Liu C, Li S, Yu Y, Niu R, Wang J (2017) iTRAQ-based proteomic analysis of testis from mice exposed to the fluoride ion. Fluoride 50:15–28

    Google Scholar 

  • Turunen HT, Sipila P, Krutskikh A, Toivanen J, Mankonen H, Hamalainen V, Bjorkgren I, Huhtaniemi I, Poutanen M (2012) Loss of cysteine-rich secretory protein 4 (Crisp4) leads to deficiency in sperm-zona pellucida interaction in mice. Biol Reprod 86:1–8

    Article  PubMed  Google Scholar 

  • Udby L, Bjartell A, Malm J, Egesten A, Lundwall A, Cowland JB, Borregaard N, Kjeldsen L (2005) Characterization and localization of cysteine-rich secretory protein 3 (CRISP-3) in the human male reproductive tract. J Androl 26:333–342

    Article  CAS  PubMed  Google Scholar 

  • Vernet P, Aitken RJ, Drevet JR (2004) Antioxidant strategies in the epididymis. Mol Cell Endocrinol 216:31–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant nos. 31372497 and 31201965) and Program for the Top Young Innovative Talents of Shanxi Agricultural University (Grant no. TYIT201408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jundong Wang.

Ethics declarations

Ethical approval

All the experimental protocols in this study were approved by the Institutional Animal Care and Use Committee of Shanxi Agricultural University (Taigu, China).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Li, S., Yu, Y. et al. Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92, 169–180 (2018). https://doi.org/10.1007/s00204-017-2054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2054-2

Keywords

Navigation