Skip to main content
Log in

Dose–response relationship of temozolomide, determined by the Pig-a, comet, and micronucleus assay

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Temozolomide (TMZ), a monofunctional alkylating agent, was selected as a model compound to determine its quantitative genotoxic dose–response relationship in different tissues (blood, liver, and jejunum) and endpoints [Pig-a-, comet-, and micronucleus assay (MNT)] in male rats. TMZ was administered p.o. over 5 consecutive days (day 1–5), followed by a treatment-free period of 50 days (day 6–56) and a final administration prior to necropsy (day 57–59). TMZ showed a dose-dependent increase in DNA damage in all interrogated endpoints. A statistically significant increase in Pig-a mutant phenotypes was observed on day 44 starting at 7.5 mg/kg/day for mutant reticulocytes (for RETCD59−) and at 3.75 mg/kg/day for mutant red blood cells (RBCCD59−), respectively. In addition, a statistically significant increase in cytogenetic damage, as measured by micronucleated reticulocytes, was observed starting at 3.75 mg/kg/day on day 3 and 1.5 mg/kg/day on day 59. DNA strand breaks, as detected by the comet assay, showed a dose-dependent and statistically significant increase in liver, blood, and jejunum starting at doses of 3.75, 3.75, and 7.5 mg/kg/day, respectively. The dose–response relationships of the Pig-a, MNT, and comet data were analyzed for possible points of departure (PoD) using the benchmark-dose (BMD) software PROAST with different critical effect sizes (CES) (BMD0.1, BMD0.5, BMD1, and BMD1SD). Overall, PoD values show a high concordance between different tissues and endpoints, underlining the suitability of this experimental design to explore quantitative dose–response relationships in a variety of different tissues and endpoints, while minimizing animal use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AMU EFSA (2009) Guidance of the Scientific Committee on Use of the benchmark dose approach in risk assessment. 1:72. doi:10.2903/j.efsa.2009.1150

  • Bodell WJ, Gaikwad NW, Miller D, Berger MS (2003) Formation of DNA adducts and induction of lacI mutations in Big Blue Rat-2 cells treated with temozolomide: implications for the treatment of low-grade adult and pediatric brain tumors. Cancer epidemiology, biomarkers and prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Int Soc Cell 12(6):545–551

    CAS  Google Scholar 

  • Burlinson B, Tice RR, Speit G et al (2007) Fourth International Workgroup on Genotoxicity testing: results of the in vivo Comet assay workgroup. Mutat Res 627(1):31–35

    Article  CAS  PubMed  Google Scholar 

  • Christmann M, Kaina B (2013) Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. NuclAcids Res 41(18):8403–8420 doi:10.1093/nar/gkt635

    Article  CAS  Google Scholar 

  • Derelanko MJ (1987) Determination of erythrocyte life span in F-344, Wistar, and Sprague–Dawley rats using a modification of the [3H]diisopropylfluorophosphate ([3H]DFP) method. Fundam Appl Toxicol 9(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Doak SH, Jenkins GJS, Johnson GE, Quick E, Parry EM, Parry JM (2007) Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens. Cancer Res 67(8):3904–3911. doi:10.1158/0008-5472.can-06-4061

    Article  CAS  PubMed  Google Scholar 

  • Dobo KL, Fiedler RD, Gunther WC et al (2011) Defining EMS and ENU dose–response relationships using the Pig-a mutation assay in rats. Mutat Res 725(1–2):13–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edler L (2014) Extrapolation-procedures for carcinogenic and noncarcinogenic compounds. Regul Toxicol. doi:10.1007/978-3-642-35374-1_46

    Google Scholar 

  • Geiger H, Schleimer D, Nattamai KJ, Dannenmann SR, Davies SM, Weiss BD (2006) Mutagenic potential of temozolomide in bone marrow cells in vivo. Blood 107(7):3010–3011

    Article  CAS  PubMed  Google Scholar 

  • Gocke E, Müller L (2009) In vivo studies in the mouse to define a threshold for the genotoxicity of EMS and ENU. Mutat Res 678(2):101–107. doi:10.1016/j.mrgentox.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  • Gocke E, Ballantyne M, Whitwell J, Müller L (2009) MNT and Muta TM Mouse studies to define the in vivo dose response relations of the genotoxicity of EMS and ENU. 190:286–297 doi:10.1016/j.toxlet.2009.03.021

  • Gollapudi BB, Johnson GE, Hernandez LG et al (2013) Quantitative approaches for assessing dose–response relationships in genetic toxicology studies. Environ Mol Mutagen 54(1):8–18. doi:10.1002/em.21727

    Article  CAS  PubMed  Google Scholar 

  • Guérard M, Baum M, Bitsch A et al (2015) Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. Mutat Res Rev Mutat Res 763. doi:10.1016/j.mrrev.2014.11.001

  • Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis 18(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Tice RR, MacGregor JT et al (1994) In vivo rodent erythrocyte micronucleus assay. Mutat Res 312(293–304) doi:10.1016/0165-1161(94)90039-6

  • JaCVAM (2013) Report of the JaCVAM initiative international pre-validation studies of the in vivo rodent alkaline Comet assay for the detection of genotoxic carcinogens, version 1.4. http://www.oecdorg/env/ehs/testing/Come%20assay%20revised%20pre-validation%20report%202013pdf

  • Johnson GE, Zair Z, Bodger OG et al (2012) Investigating mechanisms for non-linear genotoxic responses, and analysing their effects in binary combination. Genes Environment 34(4):179–185

    Article  CAS  Google Scholar 

  • Johnson GE, Soeteman-Hernandez LG, Gollapudi BB et al (2014) Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment. Environ Mol Mutagen

  • Kaina B, Ochs K, Groesch S et al (2001) BER, MGMT and MMR in defense against alkylation-induced genotoxicity and apoptosis. Prog Nucleic Acid Res Mol Biol 66:41–54

    Article  Google Scholar 

  • Litron (2009) Rat Pig-A mutation, analysis by flow cytometry, instruction manual

  • MacGregor JT, Heddle JA, Hite M et al (1987) Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res 189:103–112

    Article  CAS  PubMed  Google Scholar 

  • MacGregor JT, Frotschl R, White PA et al (2015a) IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. Mutat Res Genet Toxicol Environ Mutagen 783:66–78

  • MacGregor JT, Frotschl R, White PA et al (2015b) IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure–response relationships and points of departure (PoDs). Mutat Res Genet Toxicol Environ Mutagen 783:55–65

  • Mavournin KH, Blakey DH, Cimino MC, Salamone MF, Heddle JA (1990) The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the US Environmental Protection Agency Gene-Tox Program. Mutation Research/Reviews in Genetic. Toxicology 239(1):29–80

    CAS  Google Scholar 

  • Muto S, Yamada K, Kato T et al (2016) Evaluation of the mutagenicity of alkylating agents, methylnitrosourea and temozolomide, using the rat Pig-a assay with total red blood cells or reticulocytes. Mutation Res Genet Toxicol Environ Mutagen (in press)

  • OECD, 474 (2014) OECD guideline for the testing of chemicals: Mammalian Erythrocyte Micronucleus Test

  • Reyderman L, Statkevich P, Thonoor CM, Patrick J, Batra VK, Wirth M (2004) Disposition and pharmacokinetics of temozolomide in rat. Xenobiotica 34(5):487–500

    Article  CAS  PubMed  Google Scholar 

  • Sand S, Portier CJ, Krewski D (2011) A signal-to-noise crossover dose as the point of departure for health risk assessment. Environ Health Perspect 119(12):1766–1774

    Article  PubMed  PubMed Central  Google Scholar 

  • Slob W, Setzer RW (2014) Shape and steepness of toxicological dose–response relationships of continuous endpoints. Crit Rev Toxicol 44(3):270–297

    Article  PubMed  Google Scholar 

  • Swiss Animal Welfare Law (Tierschutzgesetz DT) 2005

  • Tang L, Singer T, Gocke E (2012) Dose–response of alkylating agents in DNA repair-proficient and -deficient Ames tester strains. Mutagenesis 27(6) doi:10.1093/mutage/ges061

  • Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  CAS  PubMed  Google Scholar 

  • Tierschutzgesetz (2005) (Swiss animal welfare law). Federal veterinary office

  • Vernole P, Pepponi R, D’Atri S (2003) Role of mismatch repair in the induction of chromosomal aberrations and sister chromatid exchanges in cells treated with different chemotherapeutic agents. Cancer Chemother Pharmacol 52(3):185–192

    Article  CAS  PubMed  Google Scholar 

  • Zaïr ZM, Jenkins GJ, Doak SH, Singh R, Brown K, Johnson GE (2011) N-methylpurine DNA glycosylase plays a pivotal role in the threshold response of ethyl methanesulfonate-induced chromosome damage. Toxicol Sci Off J Soc Toxicol 119(2):346–358. doi:10.1093/toxsci/kfq341

    Article  Google Scholar 

  • Zeller A, Tang L, Dertinger SD, Funk J, Duran-Pacheco G, Guerard M (2015) A proposal for a novel rationale for critical effect size in dose–response analysis based on a multi-endpoint in vivo study with methyl methanesulfonate. Mutagenesis

  • Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Elmar Gocke for his valuable input in the design and set-up of the experiment and Leilei Tang for her contribution in performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guérard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guérard, M., Johnson, G., Dertinger, S. et al. Dose–response relationship of temozolomide, determined by the Pig-a, comet, and micronucleus assay. Arch Toxicol 91, 2443–2453 (2017). https://doi.org/10.1007/s00204-016-1923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1923-4

Keywords

Navigation