Skip to main content

Advertisement

Log in

Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs)

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The increased production and use of multi-walled carbon nanotubes (MWCNTs) in a diverse array of consumer, medical, and industrial applications have raised concerns about potential human exposure to these materials in the workplace and ambient environments. Inhalation is a primary route of exposure to MWCNTs, and the existing data indicate that they are potentially hazardous to human health. While a 90-day rodent inhalation test (e.g., OECD Test No. 413: subchronic inhalation toxicity: 90-day study or EPA Health Effects Test Guidelines OPPTS 870.3465 90-day inhalation toxicity) is recommended by the U.S. Environmental Protection Agency Office of Pollution Prevention and Toxics for MWCNTs (and other CNTs) if they are to be commercially produced (Godwin et al. in ACS Nano 9:3409–3417, 2015), this test is time and cost-intensive and subject to scientific and ethical concerns. As a result, there has been much interest in transitioning away from studies on animals and moving toward human-based in vitro and in silico models. However, given the multiple mechanisms of toxicity associated with subchronic exposure to inhaled MWCNTs, a battery of non-animal tests will likely be needed to evaluate the key endpoints assessed by the 90-day rodent study. Pulmonary fibrosis is an important adverse outcome related to inhalation exposure to MWCNTs and one that the non-animal approach should be able to assess. This review summarizes the state-of-the-science regarding in vivo and in vitro toxicological methods for predicting MWCNT-induced pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aberle DR, Gamsu G, Ray CS, Feuerstein IM (1988) Asbestos-related pleural and parenchymal fibrosis: detection with high-resolution CT. Radiology 166:729–734

    Article  CAS  PubMed  Google Scholar 

  • Aldieri E, Fenoglio I, Cesano F, Gazzano E, Gulino G, Scarano D, Attanasio A, Mazzucco G, Ghigo D, Fubini B (2013) The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J Toxicol Environ Health A 76:1056–1071

    Article  CAS  PubMed  Google Scholar 

  • Alfaro-Moreno E, Nawrot TS, Vanaudenaerde BM, Hoylaerts MF, Vanoirbeek JA, Nemery B, Hoet PHM (2008) Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur Respir J 32:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Blank F, Rothen-Rutishauser BM, Schurch S, Gehr P (2006) An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med 19:392–405

    Article  PubMed  Google Scholar 

  • Bove PF, Dang H, Cheluvaraju C, Jones LC, Liu X, O’Neal WK, Randell SH, Schlegel R, Boucher RC (2013) Breaking the in vitro alveolar type II cell proliferation barrier while retaining ion transport properties. Am J Respir Cell Mol Biol 50:767–776

    Article  Google Scholar 

  • Brandenberger C, Mühlfeld C, Ali Z, Lenz A-G, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B (2010a) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG (2010b) Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 242:56–65

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V (2007) An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45:1743–1756

    Article  CAS  Google Scholar 

  • Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153

    Article  CAS  PubMed  Google Scholar 

  • Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, Bonner JC (2010) Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43:142–151

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Nie H, Gao X, Yang J, Pu J, Chen Z, Cui X, Wang Y, Wang H, Jia G (2014) Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett 226:150–162

    Article  CAS  PubMed  Google Scholar 

  • Chortarea S, Clift MJD, Vanhecke D, Endes C, Wick P, Petri-Fink A, Rothen-Rutishauser B (2015) Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology 9:983–993

    Article  PubMed  Google Scholar 

  • Clift MJ, Endes C, Vanhecke D, Wick P, Gehr P, Schins RP, Petri-Fink A, Rothen-Rutishauser B (2014) A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol Sci 137:55–64

    Article  CAS  PubMed  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Murphy F, Duffin R, Poland C (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Donaldson K, Poland CA, Murphy FA, Macfarlane M, Chernova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv Drug Deliv Rev 65:2078–2086

    Article  CAS  PubMed  Google Scholar 

  • Downey GP (2011) Resolving the scar of pulmonary fibrosis. N Engl J Med 365:1140–1141

    Article  CAS  PubMed  Google Scholar 

  • Elbert KJ, Schafer UF, Schafers HJ, Kim KJ, Lee VH, Lehr CM (1999) Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm Res 16:601–608

    Article  CAS  PubMed  Google Scholar 

  • Ellinger-Ziegelbauer H, Pauluhn J (2009) Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology 266:16–29

    Article  CAS  PubMed  Google Scholar 

  • Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, Evans DE, Kashon ML, Deddens JA, Hulderman T, Bilgesu SA, Battelli L, Schwegler-Berry D, Leonard HD, McKinney W, Frazer DG, Antonini JM, Porter DW, Castranova V, Schubauer-Berigan MK (2013) Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol 10:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, Mazzucco G, Attanasio A, Yakoub Y, Lison D, Fubini B (2012) Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 25:74–82

    Article  CAS  PubMed  Google Scholar 

  • Fuchs S, Hollins AJ, Laue M, Schaefer UF, Roemer K, Gumbleton M, Lehr CM (2003) Differentiation of human alveolar epithelial cells in primary culture: morphological characterization and synthesis of caveolin-1 and surfactant protein-C. Cell Tissue Res 311:31–45

    Article  PubMed  Google Scholar 

  • Godwin H, Nameth C, Avery D, Bergeson LL, Bernard D, Beryt E, Boyes W, Brown S, Clippinger AJ, Cohen Y, Doa M, Hendren CO, Holden P, Houck K, Kane AB, Klaessig F, Kodas T, Landsiedel R, Lynch I, Malloy T, Miller MB, Muller J, Oberdorster G, Petersen EJ, Pleus RC, Sayre P, Stone V, Sullivan KM, Tentschert J, Wallis P, Nel AE (2015) Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano 9:3409–3417

    Article  CAS  PubMed  Google Scholar 

  • Grainger C, Greenwell L, Lockley D, Martin G, Forbes B (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RF Jr, Buford M, Xiang C, Wu N, Holian A (2012) NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24:995–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–749

    Article  PubMed  Google Scholar 

  • Haniu H, Matsuda Y, Takeuchi K, Kim YA, Hayashi T, Endo M (2010) Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicol Appl Pharmacol 242:256–262

    Article  CAS  PubMed  Google Scholar 

  • Herzog F, Clift MJ, Piccapietra F, Behra R, Schmid O, Petri-Fink A, Rothen-Rutishauser B (2013) Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol 10:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog F, Loza K, Balog S, Clift MJ, Epple M, Gehr P, Petri-Fink A, Rothen-Rutishauser B (2014) Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein J Nanotechnol 5:1357–1370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG (2010) ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang ATN, Chen P, Juarez J, Sachamitr P, Billing B, Bosnjak L, Dahlen B, Coles M, Svensson M (2012) Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol 302:L226–L237

    Article  CAS  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, Bonner JC, Garantziotis S (2014) Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson G, Mankus C, Oldach J, Child M, Spratt M, Armento A, Ayehunie S, Hayden P (2013) A triple cell co-culture model of the air-blood barrier reconstructed from human primary cells. Toxicol Lett 221(Suppl):S138

    Article  Google Scholar 

  • Jantzen K, Roursgaard M, Desler C, Loft S, Rasmussen LJ, Møller P (2012) Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages. Mutagenesis 27:693–701

    Article  CAS  PubMed  Google Scholar 

  • Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, Nishizawa T, Matsumoto M, Fukushima S (2015) Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology 9:413–422

    Article  CAS  PubMed  Google Scholar 

  • Kemp SJ, Thorley AJ, Gorelik J, Seckl MJ, O’Hare MJ, Arcaro A, Korchev Y, Goldstraw P, Tetley TD (2008) Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am J Respir Cell Mol Biol 39:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Klein CL, Wiench K, Wiemann M, Ma-Hock L, Ravenzwaay B, Landsiedel R (2012) Hazard identification of inhaled nanomaterials: making use of short-term inhalation studies. Arch Toxicol 86:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Klein S, Serchi T, Hoffmann L, Blömeke B, Gutleb A (2013) An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol 10:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz AG, Karg E, Brendel E, Hinze-Heyn H, Maier KL, Eickelberg O, Stoeger T, Schmid O (2013) Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int 2013:652632

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao Y-P, Wang M, Li Z, Hwang A, Song T-B, Xu R, Yang Y, Zink JI, Nel AE, Xia T (2013) The surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano 7:2352–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G (1976) A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70

    Article  CAS  PubMed  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol Mech Methods 23:196–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, Derk R, Stueckle TA, Porter DW, Sager T, Gou H, Dinu CZ, Wu N, Mercer RR, Rojanasakul Y (2014) Effect of fiber length on carbon nanotube-induced fibrogenesis. Int J Mol Sci 15:7444–7461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClellan R (2000) Particle interactions with the respiratory tract. Lung Biol Health Dis 143:3–56

    Article  Google Scholar 

  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW (2011) Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW (2013) Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 10:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Rojanasakul Y, Chen BT, Castranova V, Mercer RR, Wang L (2012) Assessment of pulmonary fibrogenic potential of multiwalled carbon nanotubes in human lung cells. J Nanomater 2012:11

    Google Scholar 

  • Mishra A, Stueckle TA, Mercer RR, Derk R, Rojanasakul Y, Castranova V, Wang L (2015) Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis. Am J Physiol Lung Cell Mol Physiol 309:L821–L833

    CAS  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    Article  CAS  PubMed  Google Scholar 

  • Nalayanda D, Puleo C, Fulton W, Sharpe L, Wang T-H, Abdullah F (2009) An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices 11:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Nalayanda DD, Wang Q, Fulton WB, Wang T-H, Abdullah F (2010) Engineering an artificial alveolar-capillary membrane: a novel continuously perfused model within microchannels. J Pediatr Surg 45:45–51

    Article  PubMed  PubMed Central  Google Scholar 

  • NIOSH (2013) Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. http://www.cdc.gov/niosh/docs/2013-145/pdfs/2013-145.pdf

  • NRC (2007) National Research Council. Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DC

    Google Scholar 

  • Ochs M, Weibel ER (2008) Functional design of the human lung for gas exchange. In: Fishman AP, Elias JA, Fishman JA, Grippi MA, Senior RM, Pack AI (eds) Fishman’s pulmonary diseases and disorders. McGraw Hill, New York, pp 23–69

    Google Scholar 

  • OECD (2012) Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. Series on the safety of manufactured nanomaterials no. 36. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2012)40&doclanguage=en

  • Palecanda A, Kobzik L (2001) Receptors for unopsonized particles: the role of alveolar macrophage scavenger receptors. Curr Mol Med 1:589–595

    Article  CAS  PubMed  Google Scholar 

  • Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870

    Article  PubMed  Google Scholar 

  • Pauluhn J (2010) Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–242

    Article  CAS  PubMed  Google Scholar 

  • Paur H-R, Cassee FR, Teeguarden J, Fissan H, Diabate S, Aufderheide M, Kreyling WG, Hänninen O, Kasper G, Riediker M, Rothen-Rutishauser B, Schmid O (2011) In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—a dialog between aerosol science and biology. J Aerosol Sci 42:668–692

    Article  CAS  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–147

    Article  CAS  PubMed  Google Scholar 

  • Poulsen SS, Jacobsen NR, Labib S, Wu D, Husain M, Williams A, Bogelund JP, Andersen O, Kobler C, Molhave K, Kyjovska ZO, Saber AT, Wallin H, Yauk CL, Vogel U, Halappanavar S (2013) Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells. PLoS ONE 8:e80452

    Article  Google Scholar 

  • Poulsen SS, Saber AT, Williams A, Andersen O, Købler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, Mortensen A, Jackson P, Kyjovska ZO, Mølhave K, Jacobsen NR, Jensen KA, Yauk CL, Wallin H, Halappanavar S, Vogel U (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16–32

    Article  CAS  PubMed  Google Scholar 

  • Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  PubMed  Google Scholar 

  • Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier J-F, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Kondoh Y, Myers J, Müller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schünemann HJ (2011) An Official ATS/ERS/JRS/ALAT Statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  • Robledo R, Mossman B (1999) Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol 180:158–166

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser B, Blank F, Mühlfeld C, Gehr P (2008a) In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 4:1075–1089

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser B, Mueller L, Blank F, Brandenberger C, Muehlfeld C, Gehr P (2008b) A newly developed in vitro model of the human epithelial airway barrier to study the toxic potential of nanoparticles. ALTEX 25:191–196

    PubMed  Google Scholar 

  • Rothen-Rutishauser B, Brown DM, Piallier-Boyles M, Kinloch IA, Windle AH, Gehr P, Stone V (2010a) Relating the physicochemical characteristics and dispersion of multiwalled carbon nanotubes in different suspension media to their oxidative reactivity in vitro and inflammation in vivo. Nanotoxicology 4:331–342

    Article  CAS  PubMed  Google Scholar 

  • Rothen-Rutishauser B, Lehmann AD, Clift MJ, Blank F, Gehr P (2010b) Laser scanning microscopy combined with image restoration to analyse a 3D model of the human epithelial airway barrier. Swiss Med Wkly 140:w13060

    PubMed  Google Scholar 

  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdorster G (2010) Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73:445–461

    Article  CAS  PubMed  Google Scholar 

  • Rydman E, Catalán J, Nymark P, Palomäki J, Norppa H, Alenius H, Koivisto J, Wolff H, Hämeri K, Pylkkänen L (2013) Evaluation of the health effects of carbon nanotubes. Finnish Institute of Occupational Health

  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluharty KL, Castranova V, Reynolds SH (2014) Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11:1–18

    Article  Google Scholar 

  • Sato Y, Yokoyama A, Shibata K-I, Akimoto Y, Ogino S-I, Nodasaka Y, Kohgo T, Tamura K, Akasaka T, Uo M, Motomiya K, Jeyadevan B, Ishiguro M, Hatakeyama R, Watari F, Tohji K (2005) Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol BioSyst 1:176–182

    Article  CAS  PubMed  Google Scholar 

  • Sauer UG, Aumann A, Ma-Hock L, Landsiedel R, Wohlleben W (2015) Influence of dispersive agent on nanomaterial agglomeration and implications for biological effects in vivo or in vitro. Toxicol In Vitro 29:182–186

    Article  CAS  PubMed  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  CAS  PubMed  Google Scholar 

  • Sisler JD, Pirela SV, Friend S, Farcas M, Schwegler-Berry D, Shvedova A, Thomas T, Castranova V, Demokritou P, Qian Y (2015) Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology 9:769–779

    Article  CAS  PubMed  Google Scholar 

  • Snyder-Talkington BN, Schwegler-Berry D, Castranova V, Qian Y, Guo NL (2013) Multi-walled carbon nanotubes induce human microvascular endothelial cellular effects in an alveolar-capillary co-culture with small airway epithelial cells. Part Fibre Toxicol 10:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder-Talkington BN, Dong C, Zhao X, Dymacek J, Porter DW, Wolfarth MG, Castranova V, Qian Y, Guo NL (2015) Multi-walled carbon nanotube-induced gene expression in vitro: concordance with in vivo studies. Toxicology 328:66–74

    Article  CAS  PubMed  Google Scholar 

  • Suwara MI, Green NJ, Borthwick LA, Mann J, Mayer-Barber KD, Barron L, Corris PA, Farrow SN, Wynn TA, Fisher AJ, Mann DA (2014) IL-1[alpha] released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol 7:684–693

    Article  CAS  PubMed  Google Scholar 

  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105–116

    Article  CAS  PubMed  Google Scholar 

  • Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, Parsons GN, Bonner JC (2014) Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS ONE 9:e106870

    Article  PubMed  PubMed Central  Google Scholar 

  • Uibu T, Oksa P, Auvinen A, Honkanen E, Metsärinne K, Saha H, Uitti J, Roto P (2004) Asbestos exposure as a risk factor for retroperitoneal fibrosis. Lancet 363:1422–1426

    Article  CAS  PubMed  Google Scholar 

  • van Berlo D, Wilhelmi V, Boots AW, Hullmann M, Kuhlbusch TA, Bast A, Schins RP, Albrecht C (2014) Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88:1725–1737

    Article  PubMed  Google Scholar 

  • Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S (2013) Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol 10:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Vietti G, Lison D, van den Brule S (2016) Mechanisms of lung fibrosis induced by carbon nanotubes: towards an adverse outcome pathway (AOP). Part Fibre Toxicol 13:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xia T, Ntim SA, Ji Z, George S, Meng H, Zhang H, Castranova V, Mitra S, Nel AE (2010) Quantitative techniques for assessing and controlling the dispersion and biological effects of multiwalled carbon nanotubes in mammalian tissue culture cells. ACS Nano 4:7241–7252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, Chung CH, George S, Zhang H, Wang M, Li N, Yang Y, Castranova V, Mitra S, Bonner JC, Nel AE (2011) Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5:9772–9787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xia T, Duch MC, Ji Z, Zhang H, Li R, Sun B, Lin S, Meng H, Liao Y-P, Wang M, Song T-B, Yang Y, Hersam MC, Nel AE (2012) Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett 12:3050–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Nie X, Wang Y, Li Y, Ge C, Zhang L, Wang L, Bai R, Chen Z, Zhao Y, Chen C (2013) Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway. Small 9:3799–3811

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Duch MC, Mansukhani N, Ji Z, Liao Y-P, Wang M, Zhang H, Sun B, Chang CH, Li R, Lin S, Meng H, Xia T, Hersam MC, Nel AE (2015) Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano 9:3032–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warheit DB, Webb TR, Reed KL (2007) Pulmonary toxicity screening studies in male rats with m5 respirable fibers and particulates. Inhal Toxicol 19:951–963

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208:1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the authors for their contribution toward this review.

Funding

Integrated Laboratory Systems, Inc., staff provided technical support for National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods under National Institute of Environmental Health Sciences (NIEHS) contract HHSN27320140003C and HHSN273201500010C, but do not represent NIEHS, NTP, or the official positions of any Federal agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy J. Clippinger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Nikota, J., Halappanavar, S. et al. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Arch Toxicol 90, 1605–1622 (2016). https://doi.org/10.1007/s00204-016-1742-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1742-7

Keywords

Navigation