Skip to main content

Fibrogenic and Immunotoxic Responses to Carbon Nanotubes

  • Chapter
Biological Effects of Fibrous and Particulate Substances

Abstract

Carbon nanotubes (CNTs) are a major product of the emerging nanotechnology industry that have numerous applications. Human exposure to CNTs is inevitable as they will be manufactured and incorporated into consumer products. CNTs represent a widely varying class of nanomaterials that vary due to numbers of concentric walls (single versus multiple) and manufacturing process that result in variable rigidity and metal catalyst content. Moreover, post-synthesis functionalization to enhance the properties of CNTs will create a vast array of new nanomaterials that have unknown effects on biological systems. Toxicologists have been proactive in investigating the potential adverse effects of CNTs, and an overwhelming body of evidence shows that fibrosis is a common outcome of pulmonary exposure in rodents. CNTs also have adverse effects on the immune system, including impaired macrophage function and exacerbation of preexisting lung inflammatory diseases. In addition, CNTs may cause systemic immune suppression. A major issue is the potential carcinogenic effects of CNTs, particularly with regards to mesothelioma. The overall goal is to predict and prevent human disease that could occur from CNT exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.

    Article  CAS  PubMed  Google Scholar 

  2. Bonner JC. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc. 2010;7(2):138–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Taylor AJ, Bonner JC. Innate immune responses to nanoparticle exposure in the lung. J Environ Immunol Toxicol. 2014;1(3):150–6.

    PubMed Central  PubMed  Google Scholar 

  4. Donaldson K, Murphy FA, Duffin R, et al. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010;7:5.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bonner JC. Mesenchymal cell survival in airway and interstitial pulmonary fibrosis. Fibrogenesis Tissue Repair. 2010;3:15.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009;2(2):103–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Li JG, Li WX, Xu JY, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol. 2007;22:415–21.

    Article  CAS  PubMed  Google Scholar 

  8. Porter DW, Hubbs AF, Mercer RR, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269:136–47.

    Article  CAS  PubMed  Google Scholar 

  9. Ma-Hock L, Treumann S, Strauss V, et al. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 2009;112(2):468–81.

    Article  CAS  PubMed  Google Scholar 

  10. Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 2010;113(1):226–42.

    Article  CAS  PubMed  Google Scholar 

  11. Mercer RR, Scabilloni J, Wang L, et al. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol. 2008;294:L87–97.

    CAS  Google Scholar 

  12. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes. Am J Physiol. 2005;289(5):L698–708.

    CAS  Google Scholar 

  13. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207:221–31.

    Article  CAS  PubMed  Google Scholar 

  14. Murray AR, Kisin ER, Tkach AV, et al. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol. 2012;9:10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–25.

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Tian X, Ntim SA, et al. The dispersal state of multi-walled carbon nanotubes influences pro-fibrogenic epithelial and macrophage responses that correlate with the extent of pulmonary fibrosis. ACS Nano. 2011;5(12):9772–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, Wohlleben W, Demokritou P. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun. 2014;5:3514.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Murphy FA, Schinwald A, Poland CA, et al. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol. 2012;9:8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000;108(4):685–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hamilton Jr RF, Buford M, Xiang C, et al. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol. 2012;24(14):995–1008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao YP, Wang M, Li Z, Hwang AA, Song TB, Xu R, Yang Y, Zink JI, Nel AE, Xia T. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano. 2013;7(3):2352–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, Porter D, Elder A, Oberdörster G, Harkema JR, Bramble LA, Kavanagh TJ, Botta D, Nel A, Pinkerton KE. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS Nano GO Consortium. Environ Health Perspect. 2013;121(6):676–82.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, Parsons GN, Bonner JC. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One. 2014;9(9), e106870.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bhattacharya K, Andón FT, El-Sayed R, Fadeel B. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev. 2013;65(15):2087–97.

    Article  CAS  PubMed  Google Scholar 

  25. Kapralov AA, Feng WH, Amoscato AA, Yanamala N, Balasubramanian K, Winnica DE, Kisin ER, Kotchey GP, Gou P, Sparvero LJ, Ray P, Mallampalli RK, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA, Kagan VE. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano. 2012;6(5):4147–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bein K, Wesselkamper SC, Liu X, Dietsch M, Majumder N, Concel VJ, Medvedovic M, Sartor MA, Henning LN, Venditto C, Borchers MT, Barchowsky A, Weaver TE, Tichelaar JW, Prows DR, Korfhagen TR, Hardie WD, Bachurski CJ, Leikauf GD. Surfactant-associated protein B is critical to survival in nickel-induced injury in mice. Am J Respir Cell Mol Biol. 2009;41(2):226–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Konduru NV, Tyurina YY, Feng W, Basova LV, Belikova NA, Bayir H, Clark K, Rubin M, Stolz D, Vallhov H, Scheynius A, Witasp E, Fadeel B, Kichambare PD, Star A, Kisin ER, Murray AR, Shvedova AA, Kagan VE. Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One. 2009;4(2), e4398.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Shannahan JH, Brown JM, Chen R, Ke PC, Lai X, Mitra S, Witzmann FA. Comparison of nanotube-protein corona composition in cell culture media. Small. 2013;9(12):2171–81.

    Article  CAS  PubMed  Google Scholar 

  29. Bonner JC. Respiratory toxicology. In: Smart RC, Hodgson E, editors. Molecular and biochemical toxicology. 4th ed. New York: Wiley; 2008. p. 639–70.

    Chapter  Google Scholar 

  30. Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol. 2013;10:38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mangum JB, Turpin EA, Antao-Menezes A, Cesta MF, Bermudez E, Bonner JC. Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. Part Fibre Toxicol. 2006;3:15.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009;4(11):747–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 2010;5(5):354–9.

    Article  CAS  PubMed  Google Scholar 

  34. Andón FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, Hultenby K, Ye F, Toprak MS, Brandner BD, Fornara A, Klein-Seetharaman J, Kotchey GP, Star A, Shvedova AA, Fadeel B, Kagan VE. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 2013;9(16):2721–9.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, St Croix CM, Lang MA, Watkins SC, Konduru NV, Allen BL, Conroy J, Kotchey GP, Mohamed BM, Meade AD, Volkov Y, Star A, Fadeel B, Kagan VE. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One. 2012;7(3), e30923.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sun B, Wang X, Ji Z, Wang M, Liao YP, Chang CH, Li R, Zhang H, Nel AE, Xia T. NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small. 2015. doi:10.1002/smll.201402859 [Epub ahead of print].

    Google Scholar 

  37. Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, Kagan VE. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient c57bl/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol. 2008;231:235–40.

    Article  CAS  PubMed  Google Scholar 

  38. He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q. Multi-walled carbon nanotubes induced a fibrogenic response by stimulating reactive oxygen species production, activating NF-kB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol. 2011;24(12):2237–48.

    Article  CAS  PubMed  Google Scholar 

  39. Brown DM, Donaldson K, Stone V. Nuclear translocation of Nrf2 and expression of antioxidant defence genes in THP-1 cells exposed to carbon nanotubes. J Biomed Nanotechnol. 2010;6(3):224–33.

    Article  CAS  PubMed  Google Scholar 

  40. Lee JK, Sayers BC, Chun KS, Lao HC, Shipley-Phillips JK, Bonner JC, Langenbach R. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol. 2012;9:14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sayers BC, Taylor AJ, Glista-Baker EE, Shipley-Phillips JK, Dackor RT, Edin ML, Lih FB, Tomer KB, Zeldin DC, Langenbach R, Bonner JC. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol. 2013;49(4):525–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in a murine model of allergic asthma. Am J Respir Cell Mol Biol. 2009;40(3):349–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, Bonner JC. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol. 2010;43(2):142–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15:255–73.

    Article  CAS  PubMed  Google Scholar 

  45. Hirano S, Fujitani Y, Furuyama A, et al. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol. 2010;249(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  46. Shipkowski KA, Taylor AJ, Thompson EA, Glista-Baker EE, Sayers BC, Messenger ZJ, Bauer RN, Jaspers I, Bonner JC. An allergic lung microenvironment suppresses carbon nanotube-induced inflammasome activation via STAT6-dependent inhibition of caspase-1. PLoS One. 2015;10(6):e0128888.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hussain S, Vanoirbeek JA, Hoet PH. Interactions of nanomaterials with the immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):169–83.

    Article  CAS  PubMed  Google Scholar 

  48. Palomäki J, Välimäki E, Sund J, et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 2011;5(9):6861–70.

    Article  PubMed  Google Scholar 

  49. Meunier E, Coste A, Olagnier D, et al. Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8(6):987–95.

    Article  CAS  PubMed  Google Scholar 

  50. Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease. Nature. 2012;481(7381):278–86.

    Article  CAS  PubMed  Google Scholar 

  51. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65.

    Article  CAS  PubMed  Google Scholar 

  52. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  CAS  PubMed  Google Scholar 

  53. Girtsman TA, Beamer CA, Wu N, Buford M, Holian A. IL-1R signaling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation n C57Bl/6 mice. Nanotoxicology. 2014;8(1):17–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, Bonner JC, Garantziotis S. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol. 2014;11:28.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Inoue K, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306–16.

    Article  CAS  PubMed  Google Scholar 

  56. Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: possible role of oxidative stress. Free Radic Biol Med. 2010;48(7):924–34.

    Article  CAS  PubMed  Google Scholar 

  57. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci. 2009;109(1):113–23.

    Article  CAS  PubMed  Google Scholar 

  58. Rydman EM, Ilves M, Koivisto AJ, Kinaret PA, Fortino V, Savinko TS, Lehto MT, Pulkkinen V, Vippola M, Hämeri KJ, Matikainen S, Wolff H, Savolainen KM, Greco D, Alenius H. Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol. 2014;11:48.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy. 2008;38(1):4–18.

    CAS  PubMed  Google Scholar 

  60. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM. A carbon nanotube toxicity paradigm driven by mast cells and the IL33/ST2 axis. Small. 2012;8(18):2904–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, Rottman JB, Smith DE, Holian A. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology. 2013;7(6):1070–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Gill MA. The role of dendritic cells in asthma. J Allergy Clin Immunol. 2012;129(4):889–901.

    Article  CAS  PubMed  Google Scholar 

  63. Laverny G, Casset A, Purohit A, et al. Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicol Lett. 2012;217(2):91–101.

    Article  PubMed  Google Scholar 

  64. Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, Star A, Fadeel B, Kagan VE, Shvedova AA. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano. 2011;5(7):5755–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Ihrie MD, Duke KS, Taylor AJ, Bonner JC. STAT1 attenuates murine allergen-induced airway remodeling and exacerbation by carbon nanotubes. Am J Respir Cell Mol Biol. 2015; [Epub ahead of print].

    Google Scholar 

  66. Glista-Baker EE, Taylor AJ, Sayers BC, Thompson EA, Bonner JC. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21 (T-bet). Part Fibre Toxicol. 2014;11:7.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J, Barchowsky A, Castranova V, Kagan VE. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation. Am J Respir Cell Mol Biol. 2008;38(5):579–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Walling BE, Kuang Z, Hao Y, Estrada D, Wood JD, Lian F, Miller LA, Shah AB, Jeffries JL, Haasch RT, Lyding JW, Pop E, Lau GW. Helical carbon nanotubes enhance the early immune response and inhibit macrophage-mediated phagocytosis of Pseudomonas aeruginosa. PLoS One. 2013;8(11), e80283.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Sanpui P, Zheng X, Loeb JC, Bisesi Jr JH, Khan IA, Afrooz AR, Liu K, Badireddy A, Wiesner MR, Ferguson P, Saleh NB, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Part Fibre Toxicol. 2014;11(1):66.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Gowdy KM, Krantz QT, King C, Boykin E, Jaspers I, Linak WP, Gilmour MI. Role of oxidative stress on diesel-enhanced influenza infection in mice. Part Fibre Toxicol. 2010;7:34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kreyling WG, Hirn S, Schleh C. Nanoparticles in the lung. Nat Biotechnol. 2010;28(12):1275–6.

    Article  CAS  PubMed  Google Scholar 

  72. Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol. 2013;10:38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Mitchell LA, Gao J, Wal RV, et al. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007;100:203–14.

    Article  CAS  PubMed  Google Scholar 

  74. Mitchell LA, Lauer FT, Burchiel SW, et al. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nature Nanotechnol. 2009;4(7):451–6.

    Article  CAS  Google Scholar 

  75. Glista-Baker EE, Taylor AJ, Sayers BC, et al. Nickel nanoparticles enhance platelet-derived growth factor-induced chemokine expression by mesothelial cells via prolonged mitogen-activated protein kinase activation. Am J Respir Cell Mol Biol. 2012;47(4):552–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–8.

    Article  CAS  PubMed  Google Scholar 

  77. Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53 +/− mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 2008;33:105–16.

    Article  CAS  PubMed  Google Scholar 

  78. Mercer RR, Hubbs AF, Scabilloni JF, et al. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol. 2010;7:28.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, Chen BT, Salisbury JL, Frazer D, McKinney W, Andrew M, Tsuruoka S, Endo M, Fluharty KL, Castranova V, Reynolds SH. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 2014;11:3.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Bonner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Bonner, J.C. (2016). Fibrogenic and Immunotoxic Responses to Carbon Nanotubes. In: Otsuki, T., Yoshioka, Y., Holian, A. (eds) Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55732-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55732-6_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55731-9

  • Online ISBN: 978-4-431-55732-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics