Skip to main content
Log in

Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Tubular cell apoptosis significantly contributes to cisplatin-induced acute kidney injury (AKI) pathogenesis. Although KCa3.1, a calcium-activated potassium channel, participates in apoptosis, its involvement in cisplatin-induced AKI is unknown. Here, we found that cisplatin treatment triggered an early induction of KCa3.1 expression associated with HK-2 cell apoptosis, the development of renal tubular damage, and apoptosis in mice. Treatment with the highly selective KCa3.1 blocker TRAM-34 suppressed cisplatin-induced HK-2 cell apoptosis. We further assessed whether KCa3.1 mediated cisplatin-induced AKI in genetic knockout and pharmacological blockade mouse models. KCa3.1 deficiency reduced renal function loss, renal tubular damage, and the induction of the apoptotic marker caspase-3 in the kidneys of cisplatin-treated KCa3.1 −/− mice. Pharmacological blockade of KCa3.1 by TRAM-34 similarly attenuated cisplatin-induced AKI in mice. Furthermore, we dissected the mechanisms underlying cisplatin-induced apoptosis reduction via KCa3.1 blockade. We found that KCa3.1 blockade attenuated cytochrome c release and the increase in the intrinsic apoptotic mediators Bax, Bak, and caspase-9 after cisplatin treatment. KCa3.1 blocking inhibited the cisplatin-induced activation of the endoplasmic reticulum (ER) stress mediator caspase-12, which is independent of calcium-dependent protease m-calpain activation. Taken together, KCa3.1 blockade protects against cisplatin-induced AKI through the attenuation of apoptosis by interference with intrinsic apoptotic and ER stress-related mediators, providing a potential target for the prevention of cisplatin-induced AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chen M, Sun HY, Hu P et al (2013) Activation of BKca channels mediates hippocampal neuronal death after reoxygenation and reperfusion. Mol Neurobiol 48:794–807

    Article  CAS  Google Scholar 

  • dos Santos NA, Carvalho Rodrigues MA, Martins NM, dos Santos AC (2012) Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol 86:1233–1250

    Article  Google Scholar 

  • Elliott JI, Higgins CF (2003) IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. EMBO Rep 4:189–194

    Article  CAS  Google Scholar 

  • Freise C, Querfeld U (2014) Inhibition of vascular calcification by block of intermediate conductance calcium-activated potassium channels with TRAM-34. Pharmacol Res 85:6–14

    Article  CAS  Google Scholar 

  • Ghanshani S, Wulff H, Miller MJ et al (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275:37137–37149

    Article  CAS  Google Scholar 

  • Grgic I, Kiss E, Kaistha BP et al (2009) Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci USA 106:14518–14523

    Article  CAS  Google Scholar 

  • Kashio Y, Nakamura K, Abedin MJ et al (2003) Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J Immunol 170:3631–3636

    Article  CAS  Google Scholar 

  • Kaushal GP, Kaushal V, Hong X, Shah SV (2001) Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int 60:1726–1736

    Article  CAS  Google Scholar 

  • Kawai Y, Nakao T, Kunimura N, Kohda Y, Gemba M (2006) Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J Pharmacol Sci 100:65–72

    Article  CAS  Google Scholar 

  • Khalid MH, Shibata S, Hiura T (1999) Effects of clotrimazole on the growth, morphological characteristics, and cisplatin sensitivity of human glioblastoma cells in vitro. J Neurosurg 90:918–927

    Article  CAS  Google Scholar 

  • Khalid MH, Tokunaga Y, Caputy AJ, Walters E (2005) Inhibition of tumor growth and prolonged survival of rats with intracranial gliomas following administration of clotrimazole. J Neurosurg 103:79–86

    Article  CAS  Google Scholar 

  • Kim YK, Jung JS, Lee SH, Kim YW (1997) Effects of antioxidants and Ca2+ in cisplatin-induced cell injury in rabbit renal cortical slices. Toxicol Appl Pharmacol 146:261–269

    Article  CAS  Google Scholar 

  • Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N (2015) Ion channels in the regulation of apoptosis. Biochim Biophys Acta 1848:2532–2546

    Article  CAS  Google Scholar 

  • Krick S, Platoshyn O, Sweeney M et al (2002) Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 282:H184–H193

    Article  CAS  Google Scholar 

  • Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+ -activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560

    Article  CAS  Google Scholar 

  • Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  CAS  Google Scholar 

  • Lee EL, Hasegawa Y, Shimizu T, Okada Y (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. Am J Physiol Cell Physiol 294:C1398–C1406

    Article  CAS  Google Scholar 

  • Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700–F708

    CAS  PubMed  Google Scholar 

  • Liu H, Baliga R (2005) Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol 16:1985–1992

    Article  CAS  Google Scholar 

  • Liu Y, Zhao L, Ma W et al (2015) The blockage of KCa3.1 channel inhibited proliferation, migration and promoted apoptosis of human hepatocellular carcinoma cells. J Cancer 6:643–651

    Article  CAS  Google Scholar 

  • Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    Article  CAS  Google Scholar 

  • Marklund L, Henriksson R, Grankvist K (2001) Cisplatin-induced apoptosis of mesothelioma cells is affected by potassium ion flux modulator amphotericin B and bumetanide. Int J Cancer 93:577–583

    Article  CAS  Google Scholar 

  • Marklund L, Andersson B, Behnam-Motlagh P, Sandstrom PE, Henriksson R, Grankvist K (2004) Cellular potassium ion deprivation enhances apoptosis induced by cisplatin. Basic Clin Pharmacol Toxicol 94:245–251

    Article  CAS  Google Scholar 

  • McFerrin MB, Turner KL, Cuddapah VA, Sontheimer H (2012) Differential role of IK and BK potassium channels as mediators of intrinsic and extrinsic apoptotic cell death. Am J Physiol Cell Physiol 303:C1070–C1078

    Article  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  Google Scholar 

  • Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  Google Scholar 

  • Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23:4798–4802

    Article  CAS  Google Scholar 

  • Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    Article  CAS  Google Scholar 

  • Peyrou M, Cribb AE (2007) Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol In Vitro 21:878–886

    Article  CAS  Google Scholar 

  • Peyrou M, Hanna PE, Cribb AE (2007) Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 99:346–353

    Article  CAS  Google Scholar 

  • Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285:F610–F618

    Article  CAS  Google Scholar 

  • Remillard CV, Yuan JX (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67

    Article  CAS  Google Scholar 

  • Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Lopez-Novoa JM, Morales AI (2011) An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit Rev Toxicol 41:803–821

    Article  CAS  Google Scholar 

  • Shackelford C, Long G, Wolf J, Okerberg C, Herbert R (2002) Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol 30:93–96

    Article  Google Scholar 

  • Sharma AK, Rohrer B (2004) Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279:35564–35572

    Article  CAS  Google Scholar 

  • Sheikh-Hamad D, Cacini W, Buckley AR et al (2004) Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch Toxicol 78:147–155

    Article  CAS  Google Scholar 

  • Shepherd MC, Duffy SM, Harris T et al (2007) KCa3.1 Ca2+ activated K+ channels regulate human airway smooth muscle proliferation. Am J Respir Cell Mol Biol 37:525–531

    Article  CAS  Google Scholar 

  • Taylor SR, Gonzalez-Begne M, Dewhurst S et al (2008) Sequential shrinkage and swelling underlie P2X7-stimulated lymphocyte phosphatidylserine exposure and death. J Immunol 180:300–308

    Article  CAS  Google Scholar 

  • Toyama K, Wulff H, Chandy KG et al (2008) The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118:3025–3037

    Article  CAS  Google Scholar 

  • Wang ZH, Shen B, Yao HL et al (2007) Blockage of intermediate-conductance-Ca(2 +) -activated K(+) channels inhibits progression of human endometrial cancer. Oncogene 26:5107–5114

    Article  CAS  Google Scholar 

  • Wulff H, Castle NA (2010) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3:385–396

    Article  CAS  Google Scholar 

  • Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+ -activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 97:8151–8156

    Article  CAS  Google Scholar 

  • Yang Y, Liu H, Liu F, Dong Z (2014) Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol 88:1249–1256

    Article  CAS  Google Scholar 

  • Zhang JG, Lindup WE (1996) Cisplatin-induced nephrotoxicity in vitro: increases in cytosolic calcium concentration and the inhibition of cytosolic and mitochondrial protein kinase C. Toxicol Lett 89:11–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research Grant from the Ministry of Science and Technology (No. 102-2320-B-255-006-MY3) and a partial Grant from the Department of Chinese Medicine and Pharmacy, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan (No. 102-RD-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Heng Pao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CL., Liao, JW., Hu, O.YP. et al. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury. Arch Toxicol 90, 2249–2260 (2016). https://doi.org/10.1007/s00204-015-1607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1607-5

Keywords

Navigation