Skip to main content

Advertisement

Log in

A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. α-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to α-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of α-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by α-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal α-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to α-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-α-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with α-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in α-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barbosa DJ, Capela JP, Oliveira JM et al (2012) Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. Br J Pharmacol 165(4b):1017–1033

    Article  PubMed Central  PubMed  Google Scholar 

  • Beck BD, Seeley M, Calabrese EJ (2014) The use of toxicology in the regulatory process. In: Kruger CL (ed) Wallace H, A. Haye’s principles and methods of toxicology. CRC Press, US, pp 35–87

    Google Scholar 

  • Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81(2):179–183

    Article  CAS  PubMed  Google Scholar 

  • Broussard CN, Aggarwal A, Lacey SR et al (2001) Mushroom poisoning–from diarrhea to liver transplantation. Am J Gastroenterol 96(11):3195–3198

    CAS  PubMed  Google Scholar 

  • Bushnell DA, Cramer P, Kornberg RD (2002) Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. Proc Natl Acad Sci USA 99(3):1218–1222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Case DA, Cheatham TE 3rd, Darden T et al (2005) The amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang I-M, Yamaura Y (1993) Aucubin: a new antidote for poisonous amanita mushrooms. Phytother Res 7(1):53–56

    Article  CAS  Google Scholar 

  • Cheung PCK (2010) The nutritional and health benefits of mushrooms. Nutr Bull 35(4):292–299

    Article  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38

    Article  CAS  PubMed  Google Scholar 

  • Dores-Sousa JL, Duarte JA, Seabra V, Bastos Mde L, Carvalho F, Costa VM (2015) The age factor for mitoxantrone’s cardiotoxicity: multiple doses render the adult mouse heart more susceptible to injury. Toxicology 329:106–119

    Article  CAS  PubMed  Google Scholar 

  • Essmann U et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103

  • Fineschi V, Di Paolo M, Centini F (1996) Histological criteria for diagnosis of amanita phalloides poisoning. J Forensic Sci 41(3):429–432

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Guo H, Downey L, Marroquin C, Wei J, Kuo PC (2003) Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis 24(12):1871–1878

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Carvalho AT, Dourado DF, Baptista P, de Lourdes Bastos M, Carvalho F (2014) New in silico insights into the inhibition of RNAP II by alpha-amanitin and the protective effect mediated by effective antidotes. J Mol Graph Model 51:120–127

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Costa V, Carvalho A et al (2015a) Amanita phalloides poisoning: mechanisms of toxicity and treatment (accepted)

  • Garcia J, Costa VM, Baptista P, Bastos MdL, Carvalho F (2015b) Quantification of alpha-amanitin in biological samples by HPLC using simultaneous UV- diode array and electrochemical detection. J Chromatogr B 997:85–95

    Article  CAS  Google Scholar 

  • Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265(1–2):11–23

    Article  CAS  PubMed  Google Scholar 

  • He J, Gao S, Hu M, Chow DS, Tam VH (2013) A validated ultra-performance liquid chromatography-tandem mass spectrometry method for the quantification of polymyxin B in mouse serum and epithelial lining fluid: application to pharmacokinetic studies. J Antimicrob Chemother 68(5):1104–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaya E, Surmen MG, Yaykasli KO et al (2014) Dermal absorption and toxicity of alpha amanitin in mice. Cutan Ocul Toxicol 33(2):154–160

    Article  PubMed  Google Scholar 

  • Koda-Kimble MA, Alldredge BK, Corelli RL, Ernst ME (2012) Koda-Kimble and young’s applied therapeutics: the clinical use of drugs. Wolters Kluwer Health/Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  PubMed  Google Scholar 

  • Larson DR (2011) What do expression dynamics tell us about the mechanism of transcription? Curr Opin Genet Dev 21(5):591–599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed Central  PubMed  Google Scholar 

  • Leclerc G, Leclerc G, Barredo J (2002) Real-time RT-PCR analysis of mRNA decay: half-life of beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines. Cancer Cell Int 2(1):1

    Article  PubMed Central  PubMed  Google Scholar 

  • Leist M, Gantner F, Naumann H et al (1997) Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 112(3):923–934

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mowry JB, Spyker DA, Cantilena LR Jr, Bailey JE, Ford M (2013) 2012 annual report of the american association of poison control centers’ national poison data system (NPDS): 30th annual report. Clin Toxicol 51(10):949–1229

    Article  CAS  Google Scholar 

  • Murr MM, Yang J, Fier A, Kaylor P, Mastorides S, Norman JG (2002) Pancreatic elastase induces liver injury by activating cytokine production within kupffer cells via nuclear factor-kappa B. J Gastrointest Surg 6(3):474–480

    Article  PubMed  Google Scholar 

  • Mydlik M, Derzsiova K (2006) Liver and kidney damage in acute poisonings. Bantao J 4(1):30–32

    Google Scholar 

  • Onufriev A, Bashford D, Case DA (2000) Modification of the generalized born model suitable for macromolecules. J Phys Chem B 104(15):3712–3720

    Article  CAS  Google Scholar 

  • Pinson CW, Daya MR, Benner KG et al (1990) Liver transplantation for severe amanita phalloides mushroom poisoning. Am J Surg 159(5):493–499

    Article  CAS  PubMed  Google Scholar 

  • Poucheret P, Fons F, Dore JC, Michelot D, Rapior S (2010) Amatoxin poisoning treatment decision-making: pharmaco-therapeutic clinical strategy assessment using multidimensional multivariate statistic analysis. Toxicon 55(7):1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Reuner KH, Wiederhold M, Dunker P et al (1995) Autoregulation of actin synthesis in hepatocytes by transcriptional and posttranscriptional mechanisms. Eur J Biochem 230(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59(3):423–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider SM, Borochovitz D, Krenzelok EP (1987) Cimetidine protection against alpha-amanitin hepatotoxicity in mice: a potential model for the treatment of amanita phalloides poisoning. Ann Emerg Med 16(10):1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Schneider SM, Michelson EA, Vanscoy G (1992) Failure of N-acetylcysteine to reduce alpha amanitin toxicity. J Appl Toxicol 12(2):141–142

    Article  CAS  PubMed  Google Scholar 

  • Tong TC, Hernandez M, Richardson WH 3rd et al (2007) Comparative treatment of alpha-amanitin poisoning with N-acetylcysteine, benzylpenicillin, cimetidine, thioctic acid, and silybin in a murine model. Ann Emerg Med 50(3):282–288

    Article  PubMed  Google Scholar 

  • Vetter J (1998) Toxins of amanita phalloides. Toxicon 36(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Vogel G, Tuchweber B, Trost W, Mengs U (1984) Protection by silibinin against amanita phalloides intoxication in beagles. Toxicol Appl Pharmacol 73(3):355–362

    Article  CAS  PubMed  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230

    Article  CAS  Google Scholar 

  • Wieland T (1983) The toxic peptides from amanita mushrooms. Int J Pept Prot Res 22(3):257–276

    Article  CAS  Google Scholar 

  • Wieland T, Faulstich H (1978) Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous amanita mushrooms. CRC Crit Rev Biochem 5(3):185–260

    Article  CAS  PubMed  Google Scholar 

  • Wills BK, Haller NA, Peter D, White LJ (2005) Use of amifostine, a novel cytoprotective, in alpha-amanitin poisoning. Clin Toxicol (Phila) 43(4):261–267

    Article  CAS  Google Scholar 

  • Yamaura Y, Fukuhara M, Takabatake E, Ito N, Hashimoto T (1986) Hepatotoxic action of a poisonous mushroom, amanita abrupta in mice and its toxic component. Toxicology 38(2):161–173

    Article  CAS  PubMed  Google Scholar 

  • Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60(6):1206–1215

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Zhang L, Chen LJ et al (2007) Influence of dexamethasone on inflammatory mediators and NF-kappaB expression in multiple organs of rats with severe acute pancreatitis. World J Gastroenterol 13(4):548–556

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao YF, Zhai WL, Zhang SJ, Chen XP (2005) Protection effect of triptolide to liver injury in rats with severe acute pancreatitis. Hepatobiliary Pancreat Dis Int 4(4):604–608

    CAS  PubMed  Google Scholar 

  • Zhao J, Cao M, Zhang J, Sun Q, Chen Q, Yang ZR (2006) Pathological effects of the mushroom toxin alpha-amanitin on BALB/c mice. Peptides 27(12):3047–3052

    Article  CAS  PubMed  Google Scholar 

  • Zheleva A (2013) Phenoxyl radicals formation might contribute to severe toxicity of mushrooms toxin alpha-amanitin-an electron paramagnetic resonance study. TJS 11(1):33–38

    Google Scholar 

  • Zheleva A, Tolekova A, Zhelev M, Uzunova V, Platikanova M, Gadzheva V (2007) Free radical reactions might contribute to severe alpha amanitin hepatotoxicity-a hypothesis. Med Hypotheses 69(2):361–367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Juliana Garcia, Vera Marisa Costa, Ricardo Dinis-Oliveira and Ricardo Silvestre thank FCT—Foundation for Science and Technology—for their PhD grant (SFRH/BD/74979/2010), Post-doc grants (SFRH/BPD/63746/2009 and SFRH/BPD/110001/2015) and Investigator grants (IF/01147/2013) and (IF/00021/2014), respectively. This work was supported by the Fundação para a Ciência e Tecnologia (FCT) – project PTDC/DTPFTO/4973/2014 – and the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia) through project Pest-C/EQB/LA0006/2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juliana Garcia or Félix Carvalho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, J., Costa, V.M., Carvalho, A.T.P. et al. A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B. Arch Toxicol 89, 2305–2323 (2015). https://doi.org/10.1007/s00204-015-1582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1582-x

Keywords

Navigation