Skip to main content

Advertisement

Log in

Gold Nanoparticles: Recent Advances in the Biomedical Applications

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Among the multiple branches of nanotechnology applications in the area of medicine and biology, Nanoparticle technology is the fastest growing and shows significant future promise. Nanoscale structures, with size similar to many biological molecules, show different physical and chemical properties compared to either small molecules or bulk materials, find many applications in the fields of biomedical imaging and therapy. Gold nanoparticles (AuNPs) are relatively inert in biological environment, and have a number of physical properties that are suitable for several biomedical applications. For example, AuNPs have been successfully employed in inducing localized hyperthermia for the destruction of tumors or radiotherapy for cancer, photodynamic therapy, computed tomography imaging, as drug carriers to tumors, bio-labeling through single particle detection by electron microscopy and in photothermal microscopy. Recent advances in synthetic chemistry makes it possible to make gold nanoparticles with precise control over physicochemical and optical properties that are desired for specific clinical or biological applications. Because of the availability of several methods for easy modification of the surface of gold nanoparticles for attaching a ligand, drug or other targeting molecules, AuNPs are useful in a wide variety of applications. Even though gold is biologically inert and thus shows much less toxicity, the relatively low rate of clearance from circulation and tissues can lead to health problems and therefore, specific targeting of diseased cells and tissues must be achieved before AuNPs find their application for routine human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Krpetic, Z., Anguissola, S., Garry, D., Kelly, P. M., & Dawson, K. A. (2014). Nanomaterials: Impact on cells and cell organelles. Advances in Experimental Medicine and Biology, 811, 135–156.

    Article  CAS  PubMed  Google Scholar 

  2. Vigderman, L., & Zubarev, E. R. (2013). Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Advanced Drug Delivery Reviews, 65, 663–676.

    Article  CAS  PubMed  Google Scholar 

  3. Sanhai, W. R., Sakamoto, J. H., Canady, R., & Ferrari, M. (2008). Seven challenges for nanomedicine. Nature Nanotechnology, 3, 242–244.

    Article  CAS  PubMed  Google Scholar 

  4. Valentini, P., & Pompa, P. P. (2013). Gold nanoparticles for naked-eye DNA detection: Smart designs for sensitive assays. RSC Advances, 3, 19181–19190.

    Article  CAS  Google Scholar 

  5. Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  6. Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale., 4, 4830–4838.

    Article  CAS  PubMed  Google Scholar 

  7. Lynch, I., Salvati, A., & Dawson, K. A. (2009). Protein-nanoparticle interactions: What does the cell see? Nature Nanotechnology, 4, 546–547.

    Article  CAS  PubMed  Google Scholar 

  8. Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines. Journal of Control Release., 145, 182–195.

    Article  CAS  Google Scholar 

  9. Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9469–9474.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J., Chatterjee, D. K., Lee, M. H., & Krishnan, S. (2014). Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Letters, 347, 46–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sau, T. K., & Murphy, C. J. (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society, 126, 8648–8649.

    Article  CAS  PubMed  Google Scholar 

  13. Lin, M., Pei, H., Yang, F., Fan, C., & Zuo, X. (2013). Applications of gold nanoparticles in the detection and identification of infectious diseases and biothreats. Advanced Materials, 25, 3490–3496.

    Article  CAS  PubMed  Google Scholar 

  14. Bastus, N. G., Comenge, J., & Puntes, V. (2011). Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir, 27, 11098–11105.

    Article  CAS  PubMed  Google Scholar 

  15. Grzelczak, M., Perez-Juste, J., Mulvaney, P., & Liz-Marzan, L. M. (2008). Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 37, 1783–1791.

    Article  CAS  PubMed  Google Scholar 

  16. Kanaras, A. G., Kamounah, F. S., Schaumburg, K., Kiely, C. J., Brust, M. (2002). Thioalkylated tetraethylene glycol: A new ligand for water soluble monolayer protected gold clusters. Chemical Communications (Camb), 20, 2294–2295.

  17. Cao-Milan, R., & Liz-Marzan, L. M. (2014). Gold nanoparticle conjugates: Recent advances toward clinical applications. Expert Opinion on Drug Delivery, 11, 741–752.

    Article  CAS  PubMed  Google Scholar 

  18. Khlebtsov, N., & Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chemical Society Reviews, 40, 1647–1671.

    Article  CAS  PubMed  Google Scholar 

  19. Popovtzer, R., Agrawal, A., Kotov, N. A., Popovtzer, A., Balter, J., Carey, T. E., & Kopelman, R. (2008). Targeted gold nanoparticles enable molecular ct imaging of cancer. Nano Letters, 8, 4593–4596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. Journal of Pharmacy and Pharmacology, 60, 977–985.

    Article  CAS  PubMed  Google Scholar 

  21. Weissleder, R. (2001). A clearer vision for in vivo imaging. Nature Biotechnology, 19, 316–317.

    Article  CAS  PubMed  Google Scholar 

  22. Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chemical Society Reviews, 41, 2256–2282.

    Article  CAS  PubMed  Google Scholar 

  23. Hainfeld, J. F., Smilowitz, H. M., O’Connor, M. J., Dilmanian, F. A., & Slatkin, D. N. (2013). Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (London)., 8, 1601–1609.

    Article  CAS  PubMed Central  Google Scholar 

  24. Kah, J. C., Wong, K. Y., Neoh, K. G., Song, J. H., Fu, J. W., Mhaisalkar, S., et al. (2009). Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. Journal of Drug Targeting, 17, 181–193.

    Article  CAS  PubMed  Google Scholar 

  25. Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine & Biology, 49, N309–315.

    Article  CAS  Google Scholar 

  26. Dreaden, E. C., Mackey, M. A., Huang, X., Kang, B., & El-Sayed, M. A. (2011). Beating cancer in multiple ways using nanogold. Chemical Society Reviews, 40, 3391–3404.

    Article  CAS  PubMed  Google Scholar 

  27. Dickerson, E. B., Dreaden, E. C., Huang, X., El-Sayed, I. H., Chu, H., Pushpanketh, S., et al. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Letters, 269, 57–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hainfeld, J. F., Dilmanian, F. A., Zhong, Z., Slatkin, D. N., Kalef-Ezra, J. A., & Smilowitz, H. M. (2010). Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Physics in Medicine & Biology, 55, 3045–3059.

    Article  CAS  Google Scholar 

  29. Giuliano, A. E., Hunt, K. K., Ballman, K. V., Beitsch, P. D., Whitworth, P. W., Blumencranz, P. W., et al. (2011). Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. JAMA, 305, 569–575.

    Article  CAS  PubMed  Google Scholar 

  30. Oberdorster, G., Oberdorster, E., & Oberdorster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M. A., Olmedo, I., Clos, A., Sadagopa Ramanujam, V. M., et al. (2010). Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochemical and Biophysical Research Communications, 393, 649–655.

    Article  CAS  PubMed  Google Scholar 

  32. Love, S. A., Thompson, J. W., & Haynes, C. L. (2012). Development of screening assays for nanoparticle toxicity assessment in human blood: Preliminary studies with charged au nanoparticles. Nanomedicine (London)., 7, 1355–1364.

    Article  CAS  Google Scholar 

  33. Glazer, E. S., Zhu, C., Hamir, A. N., Borne, A., Thompson, C. S., & Curley, S. A. (2011). Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology., 5, 459–468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gad, S. C., Sharp, K. L., Montgomery, C., Payne, J. D., & Goodrich, G. P. (2012). Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). International Journal of Toxicology, 31, 584–594.

    Article  CAS  PubMed  Google Scholar 

  35. Svarovsky, S. A., Szekely, Z., & Barchi, J. J. (2005). Synthesis of gold nanoparticles bearing the thomsen–friedenreich disaccharide: A new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry, 16, 587–598.

    Article  CAS  Google Scholar 

  36. Ojeda, R., de Paz, J. L., Barrientos, A. G., Martin-Lomas, M., & Penades, S. (2007). Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydrate Research, 342, 448–459.

    Article  CAS  PubMed  Google Scholar 

  37. Parry, A. L., Clemson, N. A., Ellis, J., Bernhard, S. S., Davis, B. G., & Cameron, N. R. (2013). ‘Multicopy multivalent’ glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. Journal of the American Chemical Society, 135, 9362–9365.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X. Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochem Biophys 72, 771–775 (2015). https://doi.org/10.1007/s12013-015-0529-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0529-4

Keywords

Navigation