Skip to main content
Log in

Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver–bone axis

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Patients with chronic liver diseases frequently exhibit decreased bone mineral densities (BMD), which is defined as hepatic osteodystrophy (HOD). HOD is a multifactorial disease whose regulatory mechanisms are barely understood. Thus, an early diagnosis and therapy is hardly possible. Therefore, the aim of our study consisted in characterizing a mouse model reflecting the human pathomechanism. Serum samples were collected from patients with chronic liver diseases and 12-week old C57Bl6/N mice after 6-week treatment with carbon tetrachloride (CCl4). Repetitive injections of CCl4 induced liver damage in mice, resembling liver fibrosis in patients, as assessed by serum analysis and histological staining. Although CCl4 did not affect primary osteoblast cultures, μCT analysis revealed significantly decreased BMD, bone volume, trabecular number and thickness in CCl4-treated mice. In both HOD patients and CCl4-treated mice, an altered vitamin D metabolism with decreased CYP27A1, CYP2R1, vitamin D-binding protein GC and increased 7-dehydrocholesterol reductase hepatic gene expression, results in decreased 25-OH vitamin D serum levels. Moreover, both groups exhibit excessively high active transforming growth factor-beta (TGF-β) serum levels, inhibiting osteoblast function in vitro. Summarizing, our mouse model presents possible mediators of HOD, e.g. altered vitamin D metabolism and increased active TGF-β. Liver damage and significant changes in bone structure and mineralization are already visible by μCT analysis after 6 weeks of CCl4 treatment. This fast response and easy transferability makes it an ideal model to investigate specific gene functions in HOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

CYP2R1:

Cytochrome P450 2R1

CYP27A1:

Cytochrome P450 27A1

DHCR7:

7-Dehydrocholesterol reductase

GC:

Vitamin D-binding protein

HOD:

Hepatic osteodystrophy

IGF-1:

Insulin-like growth factor

OPG:

Osteoprotegerin

RANKL:

Receptor activator of NF-κB ligand

References

  • Angulo P, Grandison GA, Fong DG, Keach JC, Lindor KD, Bjornsson E, Koch A (2011) Bone disease in patients with primary sclerosing cholangitis. Gastroenterology 140(1):180–188. doi:10.1053/j.gastro.2010.10.014

    Article  PubMed Central  PubMed  Google Scholar 

  • Arteh J, Narra S, Nair S (2010) Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci 55(9):2624–2628. doi:10.1007/s10620-009-1069-9

    Article  CAS  PubMed  Google Scholar 

  • Bu FX, Armas L, Lappe J, Zhou Y, Gao G, Wang HW, Recker R, Zhao LJ (2010) Comprehensive association analysis of nine candidate genes with serum 25-hydroxy vitamin D levels among healthy Caucasian subjects. Hum Genet 128(5):549–556. doi:10.1007/s00439-010-0881-9

    Article  CAS  PubMed  Google Scholar 

  • Choudhary NS, Tomar M, Chawla YK, Bhadada SK, Khandelwal N, Dhiman RK, Duseja A, Bhansali A (2011) Hepatic osteodystrophy is common in patients with noncholestatic liver disease. Dig Dis Sci 56(11):3323–3327. doi:10.1007/s10620-011-1722-y

    Article  CAS  PubMed  Google Scholar 

  • Christensen MH, Apalset EM, Nordbo Y, Varhaug JE, Mellgren G, Lien EA (2013) 1,25-dihydroxyvitamin D and the vitamin D receptor gene polymorphism Apa1 influence bone mineral density in primary hyperparathyroidism. PLoS ONE 8(2):e56019. doi:10.1371/journal.pone.0056019PONE-D-12-36460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collier J (2007) Bone disorders in chronic liver disease. Hepatology 46(4):1271–1278. doi:10.1002/hep.21852

    Article  CAS  PubMed  Google Scholar 

  • Compston JE (1986) Hepatic osteodystrophy: vitamin D metabolism in patients with liver disease. Gut 27(9):1073–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham J (2005) Posttransplantation bone disease. Transplantation 79(6):629–634

    Article  PubMed  Google Scholar 

  • Diamond T, Stiel D, Lunzer M, Wilkinson M, Roche J, Posen S (1990) Osteoporosis and skeletal fractures in chronic liver disease. Gut 31(1):82–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dooley S, Hamzavi J, Ciuclan L, Godoy P, Ilkavets I, Ehnert S, Ueberham E, Gebhardt R, Kanzler S, Geier A, Breitkopf K, Weng H, Mertens PR (2008) Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 135(2):642–659. doi:10.1053/j.gastro.2008.04.038

    Article  CAS  PubMed  Google Scholar 

  • Ehnert S, Baur J, Schmitt A, Neumaier M, Lucke M, Dooley S, Vester H, Wildemann B, Stockle U, Nussler AK (2010) TGF-beta1 as possible link between loss of bone mineral density and chronic inflammation. PLoS One 5(11):e14073. doi:10.1371/journal.pone.0014073

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehnert S, Seeliger C, Vester H, Schmitt A, Saidy-Rad S, Lin J, Neumaier M, Gillen S, Kleeff J, Friess H, Burkhart J, Stockle U, Nussler AK (2011) Autologous serum improves yield and metabolic capacity of monocyte-derived hepatocyte-like cells: possible implication for cell transplantation. Cell Transplant 20(9):1465–1477. doi:10.3727/096368910X550224

    Article  CAS  PubMed  Google Scholar 

  • Gaudio A, Lasco A, Morabito N, Atteritano M, Vergara C, Catalano A, Fries W, Trifiletti A, Frisina N (2005) Hepatic osteodystrophy: does the osteoprotegerin/receptor activator of nuclear factor-kB ligand system play a role? J Endocrinol Invest 28(8):677–682

    CAS  PubMed  Google Scholar 

  • George J, Ganesh HK, Acharya S, Bandgar TR, Shivane V, Karvat A, Bhatia SJ, Shah S, Menon PS, Shah N (2009) Bone mineral density and disorders of mineral metabolism in chronic liver disease. World J Gastroenterol 15(28):3516–3522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goel V, Kar P (2010) Hepatic osteodystrophy. Trop Gastroenterol 31(2):82–86

    PubMed  Google Scholar 

  • Guanabens N, Pares A (2011) Management of osteoporosis in liver disease. Clin Res Hepatol Gastroenterol 35(6–7):438–445. doi:10.1016/j.clinre.2011.03.007

    Article  PubMed  Google Scholar 

  • Guanabens N, Enjuanes A, Alvarez L, Peris P, Caballeria L, Martinez J, de Osaba M, Cerda D, Monegal A, Pons F, Pares A (2009) High osteoprotegerin serum levels in primary biliary cirrhosis are associated with disease severity but not with the mRNA gene expression in liver tissue. J Bone Miner Metab 27(3):347–354. doi:10.1007/s00774-009-0042-1

    Article  CAS  PubMed  Google Scholar 

  • Guanabens N, Cerda D, Monegal A, Pons F, Caballeria L, Peris P, Pares A (2010) Low bone mass and severity of cholestasis affect fracture risk in patients with primary biliary cirrhosis. Gastroenterology 138(7):2348–2356. doi:10.1053/j.gastro.2010.02.016

    Article  PubMed  Google Scholar 

  • Hamburg SM, Piers DA, van den Berg AP, Slooff MJ, Haagsma EB (2000) Bone mineral density in the long term after liver transplantation. Osteoporos Int 11(7):600–606

    Article  CAS  PubMed  Google Scholar 

  • Hamzavi J, Ehnert S, Godoy P, Ciuclan L, Weng H, Mertens PR, Heuchel R, Dooley S (2008) Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med 12(5B):2130–2144. doi:10.1111/j.1582-4934.2008.00262.x

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand T, Ruegsegger P (1997) Quantification of Bone Microarchitecture with the Structure Model Index. Comput Methods Biomech Biomed Engin 1(1):15–23. doi:10.1080/01495739708936692

    Article  PubMed  Google Scholar 

  • Hochrath K, Ehnert S, Ackert-Bicknell CL, Lau Y, Schmid A, Krawczyk M, Hengstler JG, Dunn J, Hiththetiya K, Rathkolb B, Micklich K, Hans W, Fuchs H, Gailus-Durner V, Wolf E, de Angelis MH, Dooley S, Paigen B, Wildemann B, Lammert F, Nussler AK (2013) Modeling hepatic osteodystrophy in Abcb4 deficient mice. Bone 55(2):501–511. doi:10.1016/j.bone.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  • Hogler W, Baumann U, Kelly D (2011) Endocrine and bone metabolic complications in chronic liver disease and after liver transplantation in children. J Pediatr Gastroenterol Nutr 54(3):313–321. doi:10.1097/MPG.0b013e31823e9412

    Article  Google Scholar 

  • Knobeloch D, Ehnert S, Schyschka L, Buchler P, Schoenberg M, Kleeff J, Thasler WE, Nussler NC, Godoy P, Hengstler J, Nussler AK (2012) Human hepatocytes: isolation, culture, and quality procedures. Methods Mol Biol 806:99–120. doi:10.1007/978-1-61779-367-7_8

    Article  CAS  PubMed  Google Scholar 

  • Konstantynowicz J, Lebensztejn DM, Skiba E, Sobaniec-Lotowska ME, Abramowicz P, Piotrowska-Jastrzebska J, Kaczmarski M (2011) Chronic non-cholestatic liver disease is not associated with an increased fracture rate in children. J Bone Miner Metab 29(3):315–320. doi:10.1007/s00774-010-0219-7

    Article  CAS  PubMed  Google Scholar 

  • Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T (2010) PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 299(4):F882–F889. doi:10.1152/ajprenal.00360.2010

    Article  CAS  PubMed  Google Scholar 

  • Lind M (1998) Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop Scand Suppl 283:2–37

    CAS  PubMed  Google Scholar 

  • Liu T, Wang X, Karsdal MA, Leeming DJ, Genovese F (2012) Molecular serum markers of liver fibrosis. Biomark Insights 7:105–117. doi:10.4137/BMI.S10009bmi-7-2012-105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loria I, Albanese C, Giusto M, Galtieri PA, Giannelli V, Lucidi C, Di Menna S, Pirazzi C, Corradini SG, Mennini G, Rossi M, Berloco P, Merli M (2010) Bone disorders in patients with chronic liver disease awaiting liver transplantation. Transplant Proc 42(4):1191–1193. doi:10.1016/j.transproceed.2010.03.096

    Article  CAS  PubMed  Google Scholar 

  • Luxon BA (2012) Bone disorders in chronic liver diseases. Curr Gastroenterol Rep 13(1):40–48. doi:10.1007/s11894-010-0166-4

    Article  Google Scholar 

  • Maalouf NM, Sakhaee K (2006) Treatment of osteoporosis in patients with chronic liver disease and in liver transplant recipients. Curr Treat Options Gastroenterol 9(6):456–463

    Article  PubMed  Google Scholar 

  • Mansueto P, Carroccio A, Seidita A, Di Fede G, Craxi A (2012) Osteodystrophy in chronic liver diseases. Intern Emerg Med. doi:10.1007/s11739-012-0753-5

    PubMed  Google Scholar 

  • Mitchell R, McDermid J, Ma MM, Chik CL (2011) MELD score, insulin-like growth factor 1 and cytokines on bone density in end-stage liver disease. World J Hepatol 3(6):157–163. doi:10.4254/wjh.v3.i6.157

    PubMed Central  PubMed  Google Scholar 

  • Monegal A, Navasa M, Peris P, Alvarez L, Pons F, Rodes J, Guanabens N (2007) Serum osteoprotegerin and its ligand in cirrhotic patients referred for orthotopic liver transplantation: relationship with metabolic bone disease. Liver Int 27(4):492–497. doi:10.1111/j.1478-3231.2007.01448.x

    Article  CAS  PubMed  Google Scholar 

  • Mounach A, Ouzzif Z, Wariaghli G, Achemlal L, Benbaghdadi I, Aouragh A, Bezza A, El Maghraoui A (2008) Primary biliary cirrhosis and osteoporosis: a case-control study. J Bone Miner Metab 26(4):379–384. doi:10.1007/s00774-007-0833-1

    Article  PubMed  Google Scholar 

  • Nakano A, Kanda T, Abe H (1996) Bone changes and mineral metabolism disorders in rats with experimental liver cirrhosis. J Gastroenterol Hepatol 11(12):1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Pfeilschifter J, Bonewald L, Mundy GR (1990) Characterization of the latent transforming growth factor beta complex in bone. J Bone Miner Res 5(1):49–58. doi:10.1002/jbmr.5650050109

    Article  CAS  PubMed  Google Scholar 

  • Putz-Bankuti C, Pilz S, Stojakovic T, Scharnagl H, Pieber TR, Trauner M, Obermayer-Pietsch B, Stauber RE (2012) Association of 25-hydroxyvitamin D levels with liver dysfunction and mortality in chronic liver disease. Liver Int. doi:10.1111/j.1478-3231.2011.02735.x

    PubMed  Google Scholar 

  • Ritter CS, Brown AJ (2011) Direct suppression of Pth gene expression by the vitamin D prohormones doxercalciferol and calcidiol requires the vitamin D receptor. J Mol Endocrinol 46(2):63–66. doi:10.1677/JME-10-0128

    CAS  PubMed  Google Scholar 

  • Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB (1987) Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol 105(1):457–463

    Article  CAS  PubMed  Google Scholar 

  • Rode A, Fourlanos S, Nicoll A (2010) Oral vitamin D replacement is effective in chronic liver disease. Gastroenterol Clin Biol 34(11):618–620. doi:10.1016/j.gcb.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  • Rudic JS, Giljaca V, Krstic MN, Bjelakovic G, Gluud C (2011) Bisphosphonates for osteoporosis in primary biliary cirrhosis. Cochrane Database Syst Rev 12:CD009144. doi:10.1002/14651858.CD009144.pub2

  • Sarahrudi K, Thomas A, Mousavi M, Kaiser G, Kottstorfer J, Kecht M, Hajdu S, Aharinejad S (2011) Elevated transforming growth factor-beta 1 (TGF-beta1) levels in human fracture healing. Injury 42(8):833–837. doi:10.1016/j.injury.2011.03.055

    Article  PubMed Central  PubMed  Google Scholar 

  • Tejwani V, Qian Q (2013) Calcium regulation and bone mineral metabolism in elderly patients with chronic kidney disease. Nutrients 5(6):1913–1936. doi:10.3390/nu5061913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Merwe SW, van den Bogaerde JB, Goosen C, Maree FF, Milner RJ, Schnitzler CM, Biscardi A, Mesquita JM, Engelbrecht G, Kahn D, Fevery J (2003) Hepatic osteodystrophy in rats results mainly from portasystemic shunting. Gut 52(4):580–585

    Article  PubMed Central  PubMed  Google Scholar 

  • Wariaghli G, Allali F, El Maghraoui A, Hajjaj-Hassouni N (2010) Osteoporosis in patients with primary biliary cirrhosis. Eur J Gastroenterol Hepatol 22(12):1397–1401. doi:10.1097/MEG.0b013e3283405939

    PubMed  Google Scholar 

  • Weng HL, Liu Y, Chen JL, Huang T, Xu LJ, Godoy P, Hu JH, Zhou C, Stickel F, Marx A, Bohle RM, Zimmer V, Lammert F, Mueller S, Gigou M, Samuel D, Mertens PR, Singer MV, Seitz HK, Dooley S (2009) The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin-13 as driving forces in fibrogenesis. Hepatology 50(1):230–243. doi:10.1002/hep.22934

    Article  CAS  PubMed  Google Scholar 

  • Wibaux C, Legroux-Gerot I, Dharancy S, Boleslawski E, Declerck N, Canva V, Mathurin P, Pruvot FR, Cortet B (2010) Assessing bone status in patients awaiting liver transplantation. Joint Bone Spine 78(4):387–391. doi:10.1016/j.jbspin.2011.03.001

    Article  Google Scholar 

  • Yurci A, Kalkan AO, Ozbakir O, Karaman A, Torun E, Kula M, Baskol M, Gursoy S, Yucesoy M, Bayram F (2011) Efficacy of different therapeutic regimens on hepatic osteodystrophy in chronic viral liver disease. Eur J Gastroenterol Hepatol 23(12):1206–1212. doi:10.1097/MEG.0b013e32834cd6f6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was partially supported by funding of the BG trauma clinic and by the Federal Ministry of Education and Research (BMBF—0315741—Virtual Liver).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas K. Nussler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2013_1191_MOESM1_ESM.tif

Supplementary Figure: CCl4 treatment damages hepatocytes but not osteoblasts. (a) Primary human hepatocytes (N = 5, n ≥ 4) and primary human osteoblasts (N = 6, n = 4) were stimulated repeatedly (4 times) with 0, 1, 2 and 10 mM CCl4. After 96 h cell viability was determined by resazurin conversion. Reduced cell viability was observed only in hepatocytes but not in osteoblasts. (b) The CCl4 treated osteoblasts were further analysed for AP activity and matrix mineralization as functional characteristics. CCl4 treatment did not alter AP activity and matrix mineralization in osteoblasts. * p < 0.05, *** p < 0.001 as compared to untreated controls. (TIFF 1052 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nussler, A.K., Wildemann, B., Freude, T. et al. Chronic CCl4 intoxication causes liver and bone damage similar to the human pathology of hepatic osteodystrophy: a mouse model to analyse the liver–bone axis. Arch Toxicol 88, 997–1006 (2014). https://doi.org/10.1007/s00204-013-1191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1191-5

Keywords

Navigation