Skip to main content

Advertisement

Log in

AhR-mediated changes in global gene expression in rat liver progenitor cells

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Although the tumor-promoting effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), coplanar polychlorinated biphenyls (PCBs), and related compounds in liver tissue are primarily attributed to the activation of the aryl hydrocarbon receptor (AhR), the underlying molecular mechanisms are still unclear. Liver progenitor (oval) cells have been suggested to constitute a potential target for hepatocarcinogenic chemicals. To better understand AhR-driven pathways, we analyzed the transcriptional program in response to coplanar PCB 126 in contact-inhibited rat liver progenitor WB-F344 cells using high-density microarrays. After 6-h treatment, we identified 145 significantly deregulated genes considered to be direct AhR-dependent target genes. The number of differentially regulated genes increased to 658 and 968 genes after 24 and 72 h, respectively. Gene ontology analysis revealed that these genes were primarily involved in drug and lipid metabolism, cell cycle and growth control, cancer developmental processes, cell–cell communication, and adhesion. Interestingly, the Wnt and TGF-β signaling pathways, both being involved in developmental and tumorigenic processes, belonged to the most affected pathways. AhR- and ARNT-dependent regulation of selected target genes of interest was then confirmed using TCDD as a model AhR agonist, together with pharmacological inhibition of the AhR and by RNA-interference techniques. We demonstrated AhR-dependent regulation of emerging and novel AhR target genes, such as Fst, Areg, Hbegf, Ctgf, Btg2, and Foxq1. Among them, the transcription factor Foxq1, recently suggested to contribute to tumor promotion and/or progression, was found to be regulated at both mRNA and protein levels by AhR/ARNT activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson P, McGuire J, Rubio C, Gradin K, Whitelaw ML, Pettersson S et al (2002) A constitutively active dioxin/aryl hydrocarbon receptor induces stomach tumors. Proc Natl Acad Sci USA 99:9990–9995

    Article  PubMed  CAS  Google Scholar 

  • Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP (2008) Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology 47:288–295

    Article  PubMed  CAS  Google Scholar 

  • Barouki R (2010) Linking long-term toxicity of xeno-chemicals with short-term biological effects. Biochimie 92:1222–1226

    Article  PubMed  CAS  Google Scholar 

  • Barouki R, Coumoul X (2010) Cell migration and metastasis markers as targets of environmental pollutants and the aryl hydrocarbon receptor. Cell Adh Migr 4:72–76

    Article  PubMed  Google Scholar 

  • Barouki R, Coumoul X, Fernandez-Salguero PM (2007) The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 581:3608–3615

    Article  PubMed  CAS  Google Scholar 

  • Beebe LE, Fornwald LW, Diwan BA, Anver MR, Anderson LM (1995) Promotion of N-nitrosodiethylamine-initiated hepatocellular tumors and hepatoblastomas by 2,3,7,8-tetrachloro-dibenzo-p-dioxin or aroclor 1254 in C57BL/6, DBA/2, and B6D2F1 mice. Cancer Res 55:4875–4880

    PubMed  CAS  Google Scholar 

  • Blazejczyk M, Miron M, Nadon R (2007) FlexArray: a statistical data analysis software for gene expression microarrays. Genome Quebec, Montreal, Canada, URL http://genomequebec.mcgill.ca/FlexArray

  • Bock KW, Köhle C (2006) Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiological functions. Biochem Pharmacol 72:393–404

    Article  PubMed  CAS  Google Scholar 

  • Choi SS, Miller MA, Harper PA (2006) In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces amphiregulin gene expression in the developing mouse ureter. Toxicol Sci 94:163–174

    Article  PubMed  CAS  Google Scholar 

  • Chramostová K, Vondráček J, Šindlerová L, Vojtěšek B, Kozubík A, Machala M (2004) Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells. Toxicol Appl Pharmacol 196:136–148

    Article  PubMed  Google Scholar 

  • Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP (2004) A benchmark for Affymetrix GeneChip expression measures. Bioinformatics 20:323–331

    Article  PubMed  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124:1–22

    Article  PubMed  CAS  Google Scholar 

  • Dere E, Boverhof DR, Burgoon LD, Zacharewski TR (2006) In vivo-in vitro toxicogenomic comparison of TCDD-elicited gene expression in Hepa1c1c7 mouse hepatoma cells and C57BL/6 hepatic tissue. BMC Genomics 7:80

    Article  PubMed  Google Scholar 

  • Dere E, Lee AW, Burgoon LD, Zacharewski TR (2011) Differences in TCDD-elicited gene expression profiles in human HepG2, mouse Hepa1c1c7 and rat H4IIE hepatoma cells. BMC Genomics 12:193

    Article  PubMed  CAS  Google Scholar 

  • Dhar A, Ray A (2010) The CCN family proteins in carcinogenesis. Exp Oncol 32:2–9

    PubMed  CAS  Google Scholar 

  • Dietrich C (2012) The AhR in the control of cell cycle and apoptosis. In: Pohjanvirta R (ed) The AH receptor in biology and toxicology, pp 467–497

  • Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell–cell contact and tumor growth. Carcinogenesis 31:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Wallenfang K, Oesch F, Wieser F (1997) Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts. Oncogene 15:2743–2747

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Faust D, Budt S, Moskwa M, Kunz A, Bock KW, Oesch F (2002) 2,3,7,8-Tetrachlorodibenzo-p-dioxin-dependent release from contact inhibition in WB-F344 cells: involvement of cyclin A. Toxicol Appl Pharmacol 183:117–126

    Article  PubMed  CAS  Google Scholar 

  • Dietrich C, Faust D, Moskwa M, Kunz A, Bock K-W, Oesch F (2003) TCDD-dependent downregulation of gamma-catenin in rat liver epithelial cells (WB-F344). Int J Cancer 103:435–439

    Article  PubMed  CAS  Google Scholar 

  • Du B, Altorki NK, Kopelovich L, Subbaramaiah K, Dannenberg AJ (2005) Tobacco smoke stimulates the transcription of amphiregulin in human oral epithelial cells: evidence of a cyclic AMP-responsive element binding protein-dependent mechanism. Cancer Res 65:5982–5988

    Article  PubMed  CAS  Google Scholar 

  • Eto I (2000) Molecular cloning and sequence analysis of the promoter region of mouse cyclin D1 gene: implication in phorbol ester-induced tumour promotion. Cell Prolif 33:167–187

    Article  PubMed  CAS  Google Scholar 

  • Fagotto F, Gumbiner BM (1996) Cell contact-dependent signaling. Dev Biol 180:445–454

    Article  PubMed  CAS  Google Scholar 

  • Faust D, Dolado I, Cuadrado A, Oesch F, Weiss C, Nebreda AR et al (2005) p38alpha MAPK is required for contact inhibition. Oncogene 24:7941–7945

    Article  PubMed  CAS  Google Scholar 

  • Feuerborn A, Srivastava PK, Küffer S, Grandy WA, Sijmonsma TP, Gretz N et al (2011) The Forkhead factor FoxQ1 influences epithelial differentiation. J Cell Physiol: 710–719

  • Grusch M, Drucker C, Peter-Vörösmarty B, Erlach N, Lackner A, Losert A et al (2006) Deregulation of the activin/follistatin system in hepatocarcinogenesis. J Hepatol 45:673–680

    Article  PubMed  CAS  Google Scholar 

  • Hailey JR, Walker NJ, Sells DM, Brix AE, Jokinen MP, Nyska A (2005) Classification of proliferative hepatocellular lesions in harlan sprague-dawley rats chronically exposed to dioxin-like compounds. Toxicol Pathol 33:165–174

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Heit I, Wieser R, Herget T, Faust D, Borchert-Stuhlträger M, Oesch F et al (2001) Involvement of protein kinase Cdelta in contact-dependent inhibition of growth in human and murine fibroblasts. Oncogene 20:5143–5154

    Article  PubMed  CAS  Google Scholar 

  • Hrubá E, Vondráček J, Líbalová H, Topinka J, Bryja V, Souček K, Machala M (2011) Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Toxicol Lett 206:178–188

    Article  PubMed  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  • Kaneda H, Arao T, Tanaka K, Tamura D, Aomatsu K, Kudo K et al (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70:2053–2063

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Katoh M (2004) Human FOX gene family (Review). Int J Oncol 25:1495–1500

    PubMed  CAS  Google Scholar 

  • Kim SH, Henry EC, Kim DK, Kim YH, Shin KJ, Han MS et al (2006) Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol 69:1871–1878

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Dere E, Burgoon LD, Chang C–C, Zacharewski TR (2009) Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicol Sci 112:229–244

    Article  PubMed  CAS  Google Scholar 

  • Kiso S, Kawata S, Tamura S, Inui Y, Yoshida Y, Sawai Y et al (2003) Liver regeneration in heparin-binding EGF-like growth factor transgenic mice after partial hepatectomy. Gastroenterology 124:701–707

    Article  PubMed  CAS  Google Scholar 

  • Kolluri SK, Weiss C, Koff A, Göttlicher M (1999) p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev 13:1742–1753

    Article  PubMed  CAS  Google Scholar 

  • Küppers M, Ittrich C, Faust D, Dietrich C (2010) The transcriptional programme of contact-inhibition. J Cell Biochem 110:1234–1243

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Whitlock JP Jr (1996) The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Mol Cell Biol 16:8878–8884

    Google Scholar 

  • Marlowe J, Puga A (2005) Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 96:1174–1184

    Article  PubMed  CAS  Google Scholar 

  • McIntosh BE, Hogenesch JB, Bradfield CA (2010) Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu Rev Physiol 72:625–645

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Guo N, Kejariwal A, Thomas PD (2007) PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways. Nucleic Acids Res 35:D247–D252

    Article  PubMed  CAS  Google Scholar 

  • Miao W, Hu L, Scrivens PJ, Batist G (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280:20340–20348

    Article  PubMed  CAS  Google Scholar 

  • Mitchell C, Nivison M, Jackson LF, Fox R, Lee DC, Campbell JS, Fausto N (2005) Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. J Biol Chem 280:2562–2568

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KA, Wilson SR, Elferink CJ (2010) The activated aryl hydrocarbon receptor synergizes mitogen-induced murine liver hyperplasia. Toxicology 276:103–109

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi E, Higashiyama S, Nakagawa T, Suzuki K, Horimoto M, Hayashi N et al (1996) High expression of heparin-binding EGF-like growth factor in rat hepatocarcinogenesis. Int J Cancer 68:215–218

    Article  PubMed  CAS  Google Scholar 

  • Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C, Poellinger L, Schwarz M (2004) A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res 64:4707–4710

    Article  PubMed  CAS  Google Scholar 

  • Münzel P, Bock-Hennig B, Schieback S, Gschaidmeier H, Beck-Gschaidmeier S, Bock K-W (1996) Growth modulation of hepatocytes and rat liver epithelial cells (WB-F344) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Carcinogenesis 17:197–202

    Article  PubMed  Google Scholar 

  • Nebert D, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960

    Article  PubMed  CAS  Google Scholar 

  • Nukaya M, Moran S, Bradfield CA (2009) The role of the dioxin-responsive element cluster between the Cyp1a1 and Cyp1a2 loci in aryl hydrocarbon receptor biology. Proc Natl Acad Sci USA 106:4923–4928

    Article  PubMed  CAS  Google Scholar 

  • Pi L, Ding X, Jorgensen M, Pan JJ, Oh SH, Pintilie D et al (2008) Connective tissue growth factor with a novel fibronectin binding site promotes cell adhesion and migration during rat oval cell activation. Hepatology 47:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Pitot HC, Goldsworthy T, Campell HA, Poland A (1980) Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethyl-nitrosamine. Cancer Res 40:3616–3620

    PubMed  CAS  Google Scholar 

  • Planchart A, Mattingly CJ (2010) 2,3,7,8-Tetrachlorodibenzo-p-dioxin upregulates FoxQ1b in zebrafish jaw primordium. Chem Res Toxicol 23:480–487

    Article  PubMed  CAS  Google Scholar 

  • Procházková J, Kozubík A, Machala M, Vondráček J (2011a) Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells. Toxicology 279:146–154

    Article  PubMed  Google Scholar 

  • Procházková J, Kabátková M, Bryja V, Umannová L, Bernatík O, Kozubík A, Machala M, Vondráček J (2011b) The interplay of the aryl hydrocarbon receptor and β-catenin alters both AhR-dependent transcription and Wnt/β-catenin signaling in liver progenitors. Toxicol Sci 122:349–360

    Article  PubMed  Google Scholar 

  • Puga A, Maier A, Medvedovic M (2000) The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochem Pharmacol 60:1129–1142

    Article  PubMed  CAS  Google Scholar 

  • Rignall B, Braeuning A, Buchmann A, Schwarz M (2011) Tumor formation in liver of conditional β-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis 32:52–57

    Article  PubMed  CAS  Google Scholar 

  • Rodgarkia-Dara C, Vejda S, Erlach N, Losert A, Bursch W, Berger W et al (2006) The activin axis in liver biology and disease. Mutat Res 613:123–137

    Article  PubMed  CAS  Google Scholar 

  • Roskams T (2006) Liver stem cells and their implication in hepatocellular and cholangio carcinoma. Oncogene 25:3818–3822

    Article  PubMed  CAS  Google Scholar 

  • Sahlberg C, Peltonen E, Lukinmaa PL, Alaluusua S (2007) Dioxin alters gene expression in mouse embryonic tooth explants. J Dent Res 86:600–605

    Article  PubMed  CAS  Google Scholar 

  • Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y et al (2009) Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. Environ Health Perspect 117:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Canalis E (2008) Skeletal overexpression of connective tissue growth factor impairs bone formation and causes osteopenia. Endocrinology 149:4374–4381

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe S, Buchmann A, Bock KW, Schwarz M (1995) Inhibition of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated tumor promotion in rat liver. Carcinogenesis 16:1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Sun YV, Boverhof DR, Burgoon LD, Fielden MR, Zacharewski TR (2004) Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 32:4512–4523

    Article  PubMed  CAS  Google Scholar 

  • Thomsen JS, Kietz S, Ström A, Gustafsson JA (2004) HES-1, a novel target gene for the aryl hydrocarbon receptor. Mol Pharmacol 65:165–171

    Article  PubMed  CAS  Google Scholar 

  • Tsao M-S, Grisham J (1987) Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed cultured rat liver epithelial cells. Am J Pathol 127:168–181

    PubMed  CAS  Google Scholar 

  • Tsao M-S, Smith J, Nelson K, Grisham J (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of oval cells. Exp Cell Res 154:38–52

    Article  PubMed  CAS  Google Scholar 

  • Tuomisto J (2005) Does mechanistic understanding help in risk assessment-the example of dioxins. Toxicol Appl Pharmacol 207:S2–S10

    Article  CAS  Google Scholar 

  • Umannová L, Zatloukalová J, Machala M, Krčmář P, Májková Z, Hennig B, Kozubík A, Vondráček J (2007) Tumor necrosis factor-alpha modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver “stem-like” cells. Toxicol Sci 99:79–89

    Article  PubMed  Google Scholar 

  • Uno S, Dalton TP, Sinclair PR, Gorman N, Wang B, Smith AG et al (2004) Cyp1a1(−/−) male mice: protection against high-dose TCDD-induced lethality and wasting syndrome, and resistance to intrahepatocyte lipid accumulation and uroporphyria. Toxicol Appl Pharmacol 196:410–421

    Article  PubMed  CAS  Google Scholar 

  • Vezina CM, Walker NJ, Olson JR (2004) Subchronic exposure to TCDD, PeCDF, PCB 126, and PCB153: effect on hepatic gene expression. Environ Health Perspect 112:1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Viluksela M, Bager Y, Tuomisto JT, Scheu G, Unkila M, Pohjanvirta R et al (2000) Liver tumor-promoting activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive and TCDD-resistant rat strains. Cancer Res 60:6911–6920

    PubMed  CAS  Google Scholar 

  • Vondráček J, Chramostová K, Plíšková M, Bláha L, Brack W, Kozubík A, Machala M (2004) Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of proliferation by dinaphthofurans. Environ Toxicol Chem 23:2214–2220

    Article  PubMed  Google Scholar 

  • Vondráček J, Machala M, Bryja V, Chramostová K, Krčmář P, Dietrich C, Hampl A, Kozubík A (2005) Aryl hydrocarbon receptor-activating polychlorinated biphenyls and their hydroxylated metabolites induce cell proliferation in contact-inhibited rat liver epithelial cells. Toxicol Sci 83:53–63

    Article  PubMed  Google Scholar 

  • Vondráček J, Krčmář P, Procházková J, Trilecová L, Gavelová M, Skálová L et al (2009) The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells. Chem Biol Interact 180:226–237

    Article  PubMed  Google Scholar 

  • Weiss C, Kolluri SK, Kiefer F, Göttlicher M (1996) Complementation of Ah receptor deficiency in hepatoma cells: negative feedback regulation and cell cycle control by the Ah receptor. Exp Cell Res 226:154–163

    Article  PubMed  CAS  Google Scholar 

  • Weiss C, Faust D, Dürk H, Kolluri SK, Pelzer A, Schneider S et al (2005) TCDD induces c-jun expression via a novel (Ah) dioxin receptor-mediated p38-MAPK-dependent pathway. Oncogene 24:4975–4983

    Article  PubMed  CAS  Google Scholar 

  • Weiss C, Faust D, Schreck I, Ruff A, Farwerck T, Melenberg A et al (2008) TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene 27:2198–2207

    Article  PubMed  CAS  Google Scholar 

  • Wieser R, Faust D, Dietrich C, Oesch F (1999) p16INK4 mediates contact-inhibition of growth. Oncogene 18:277–281

    Article  PubMed  CAS  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED et al (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Masugi Y, Sakamoto M (2011) Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-β signaling in hepatocarcinogenesis. Dig Dis 29:284–288

    Article  PubMed  Google Scholar 

  • Yang M, Hosokawa Y, Hu Y, Kaneko S, Kaneko H, Tanaka M, Nakashima K (1997) Cloning and functional analysis of rat cyclin D2 promoter: multiple prolactin-responsive elements. Biochem Mol Biol Int 43:749–754

    PubMed  CAS  Google Scholar 

  • Zatloukalová J, Švihálková-Šindlerová L, Kozubík A, Krčmář P, Machala M, Vondráček J (2007) beta-Naphthoflavone and 3′-methoxy-4′-nitroflavone exert ambiguous effects on Ah receptor-dependent cell proliferation and gene expression in rat liver ′stem-like′cells. Biochem Pharmacol 73:1622–1634

    Article  PubMed  Google Scholar 

  • Zhang Y, Li X-M, Zhang F-K, Wang B-E (2008) Activation of canonical Wnt signaling pathway promotes proliferation and self-renewal of rat hepatic oval cell line WB-F344 in vitro. World J Gastroenterol 14:6673–6680

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZM, Wang G, Chen C, Yang ZX, Jin F, San JL et al (2009) Rapid induction of PC3/BTG2 gene by hepatopoietin or partial hepatectomy and its mRNA expression in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 8:288–293

    PubMed  CAS  Google Scholar 

  • Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F et al (2011) Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 71:1292–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Robert Ivánek (Genomics and Bioinformatics Facility, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic) for help with Affymetrix microarray analysis. The present study was supported by grant No. 524/09/1337 from the Czech Science Foundation, the 7th EU framework program project SYSTEQ (grant No. 226694) and the Deutsche Forschungsgemeinschaft (Di793/3-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cornelia Dietrich or Miroslav Machala.

Additional information

Dagmar Faust and Jan Vondráček contributed equally to the present work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faust, D., Vondráček, J., Krčmář, P. et al. AhR-mediated changes in global gene expression in rat liver progenitor cells. Arch Toxicol 87, 681–698 (2013). https://doi.org/10.1007/s00204-012-0979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0979-z

Keywords

Navigation