Skip to main content

Advertisement

Log in

Proangiogenic effects of environmentally relevant levels of bisphenol A in human primary endothelial cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is widely used in the manufacturing of consumer products such as plastic food containers and food cans. Experimental studies suggest a relationship between exposure to BPA and changes in metabolic processes and reproductive organs. Also, epidemiological studies report an association between elevated exposure to BPA and cardiovascular disease and diabetes. Although alterations in the vascular endothelium are implicated in pathological conditions associated with BPA, little is known about the effects of BPA in the human endothelium. This study aimed to investigate the effects of 0.1 nM–1 μM of BPA on selected biomarkers of endothelial dysfunction, inflammation, and angiogenesis in human umbilical vein endothelial cells (HUVEC). The mRNA expression of biomarkers was assayed using qRT-PCR, and the production of nitric oxide and reactive oxygen species was measured using the H2DCFDA and the DAF-FM assays. The effect of BPA on phosphorylated eNOS was examined using Western blot and immunofluorescence, and the endothelial tube formation assay was used to investigate in vitro angiogenesis. BPA (≤1 μM) increased the mRNA expression of the proangiogenic genes VEGFR-2, VEGF-A, eNOS, and Cx43 and increased the production of nitric oxide in HUVEC. Furthermore, BPA increased the expression of phosphorylated eNOS and endothelial tube formation in HUVEC. These studies demonstrate that environmentally relevant levels of BPA have direct proangiogenic effects on human primary endothelial cells in vitro suggesting that the human endothelium may be an important target for BPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson H, Piras E, Demma J, Hellman B, Brittebo E (2009) Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology 262(1):57–64

    Article  PubMed  CAS  Google Scholar 

  • Andersson H, Garscha U, Brittebo E (2011) Effects of PCB126 and 17beta-oestradiol on endothelium-derived vasoactive factors in human endothelial cells. Toxicology 285(1–2):46–56

    Article  PubMed  CAS  Google Scholar 

  • Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5(4):628–635

    Article  PubMed  CAS  Google Scholar 

  • Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12(3):267–274

    Article  PubMed  Google Scholar 

  • Baumgartner-Parzer SM, Wagner L, Reining G, Sexl V, Nowotny P, Muller M, Brunner M, Waldhausl W (1997) Increase by tri-iodothyronine of endothelin-1, fibronectin and von Willebrand factor in cultured endothelial cells. J Endocrinol 154(2):231–239

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore M, Sivverini G, Palumbo D, Macaluso F, Bianco A, Palma A, Farina F (2007) Increased cx43 and angiogenesis in exercised mouse hearts. Int J Sports Med 28(9):749–755

    Article  PubMed  CAS  Google Scholar 

  • Bonefeld-Jorgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115 Suppl 1:69–76

    Google Scholar 

  • Bosquiazzo VL, Varayoud J, Munoz-de-Toro M, Luque EH, Ramos JG (2011) Effects of neonatal exposure to bisphenol A on steroid regulation of vascular endothelial growth factor expression and endothelial cell proliferation in the adult rat uterus. Biol Reprod 82(1):86–95

    Article  Google Scholar 

  • Bouloumie A, Schini-Kerth VB, Busse R (1999) Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 41(3):773–780

    Article  PubMed  CAS  Google Scholar 

  • Buteau-Lozano H, Velasco G, Cristofari M, Balaguer P, Perrot-Applanat M (2008) Xenoestrogens modulate vascular endothelial growth factor secretion in breast cancer cells through an estrogen receptor-dependent mechanism. J Endocrinol 196(2):399–412

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  PubMed  CAS  Google Scholar 

  • Chevalier N, Bouskine A, Fenichel P (2011) Bisphenol A promotes testicular seminoma cell proliferation through GPER/GPR30. Int J Cancer [Epub ahead of print, 02/12/2011]. doi:10.1002/ijc.25972

  • Das H, George JC, Joseph M, Das M, Abdulhameed N, Blitz A, Khan M, Sakthivel R, Mao HQ, Hoit BD, Kuppusamy P, Pompili VJ (2009) Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One 4(10):e7325. doi:10.1371/journal.pone.0007325

    Google Scholar 

  • Dimmeler S, Dernbach E, Zeiher AM (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477(3):258–262

    Article  PubMed  CAS  Google Scholar 

  • Durando M, Kass L, Perdomo V, Bosquiazzo VL, Luque EH, Munoz-de-Toro M (2011) Prenatal exposure to bisphenol A promotes angiogenesis and alters steroid-mediated responses in the mammary glands of cycling rats. J Steroid Biochem Mol Biol 127:35–43

    Google Scholar 

  • Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB (1999) VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun 256(1):192–197

    Article  PubMed  CAS  Google Scholar 

  • Figueroa XF, Duling BR (2009) Gap junctions in the control of vascular function. Antioxid Redox Signal 11(2):251–266

    Article  PubMed  CAS  Google Scholar 

  • Florian M, Lu Y, Angle M, Magder S (2004) Estrogen induced changes in Akt-dependent activation of endothelial nitric oxide synthase and vasodilation. Steroids 69(10):637–645

    Article  PubMed  CAS  Google Scholar 

  • Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6(7):521–534

    Article  PubMed  CAS  Google Scholar 

  • Gossl M, Versari D, Hildebrandt HA, Bajanowski T, Sangiorgi G, Erbel R, Ritman EL, Lerman LO, Lerman A (2010) Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. JACC Cardiovasc Imaging 3(1):32–40

    Article  PubMed  Google Scholar 

  • Grasselli F, Baratta L, Baioni L, Bussolati S, Ramoni R, Grolli S, Basini G (2010) Bisphenol A disrupts granulosa cell function. Domest Anim Endocrinol 39(1):34–39

    Article  PubMed  CAS  Google Scholar 

  • Jenkins S, Raghuraman N, Eltoum I, Carpenter M, Russo J, Lamartiniere CA (2009) Oral exposure to bisphenol a increases dimethylbenzanthracene-induced mammary cancer in rats. Environ Health Perspect 117(6):910–915

    PubMed  CAS  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263

    Article  PubMed  CAS  Google Scholar 

  • Kwak BR, Pepper MS, Gros DB, Meda P (2001) Inhibition of endothelial wound repair by dominant negative connexin inhibitors. Mol Biol Cell 12(4):831–845

    PubMed  CAS  Google Scholar 

  • Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D (2008) Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300(11):1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Ledoux S, Queguiner I, Msika S, Calderari S, Rufat P, Gasc JM, Corvol P, Larger E (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 57(12):3247–3257

    Article  PubMed  CAS  Google Scholar 

  • Long X, Burke KA, Bigsby RM, Nephew KP (2001) Effects of the xenoestrogen bisphenol A on expression of vascular endothelial growth factor (VEGF) in the rat. Exp Biol Med (Maywood) 226(5):477–483

    CAS  Google Scholar 

  • Luksha L, Kublickiene K (2009) The role of estrogen receptor subtypes for vascular maintenance. Gynecol Endocrinol 25(2):82–95

    Article  PubMed  CAS  Google Scholar 

  • Luu NT, Rahman M, Stone PC, Rainger GE, Nash GB (2010) Responses of endothelial cells from different vessels to inflammatory cytokines and shear stress: evidence for the pliability of endothelial phenotype. J Vasc Res 47(5):451–461

    Article  PubMed  CAS  Google Scholar 

  • Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS (2010) Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One 5(1):e8673

    Article  PubMed  Google Scholar 

  • Miyawaki J, Sakayama K, Kato H, Yamamoto H, Masuno H (2007) Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb 14(5):245–252

    Article  PubMed  CAS  Google Scholar 

  • Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V (2006) Neovascularization in human atherosclerosis. Circulation 113(18):2245–2252

    Article  PubMed  Google Scholar 

  • Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87(11):5185–5190

    Article  PubMed  CAS  Google Scholar 

  • Noguchi S, Nakatsuka M, Asagiri K, Habara T, Takata M, Konishi H, Kudo T (2002) Bisphenol A stimulates NO synthesis through a non-genomic estrogen receptor-mediated mechanism in mouse endothelial cells. Toxicol Lett 135(1–2):95–101

    Article  PubMed  CAS  Google Scholar 

  • Oishi A, Takahashi K, Ohmichi M, Mochizuki Y, Inaba N, Kurachi H (2011) Role of glucocorticoid receptor in the inhibitory effect of medroxyprogesterone acetate on the estrogen-induced endothelial nitric oxide synthase phosphorylation in human umbilical vein endothelial cells. Fertil Steril 95(3):1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Piao M, Mori D, Satoh T, Sugita Y, Tokunaga O (2006) Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein. Combined with a cDNA microarray analysis. Endothel J Endothel Cell Res 13(4):249–266

    Google Scholar 

  • Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24(2):199–224

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski JM, Davis KE, Scherer PE (2009) Mechanisms of obesity and related pathologies: the macro- and microcirculation of adipose tissue. FEBS J 276(20):5738–5746

    Article  PubMed  CAS  Google Scholar 

  • Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ (2010) Perinatal exposure to bisphenol-a and the development of metabolic syndrome in CD-1 mice. Endocrinology 151(6):2603–2612

    Article  PubMed  CAS  Google Scholar 

  • Salian S, Doshi T, Vanage G (2009) Neonatal exposure of male rats to bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology 265(1–2):56–67

    Article  PubMed  CAS  Google Scholar 

  • Sargis RM, Johnson DN, Choudhury RA, Brady MJ (2010) Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring) 18(7):1283–1288

    Article  CAS  Google Scholar 

  • Sheng ZG, Zhu BZ (2011) Low Concentrations of bisphenol A induce mouse spermatogonial cell proliferation by G-protein-coupled receptor 30 and estrogen receptor-alpha. Environ Health Perspect [Epub ahead of print, 05/08/2011]. doi:10.1289/ehp.1103781

  • Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, Aubert ML, Huppi PS (2009) Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect 117(10):1549–1555

    PubMed  CAS  Google Scholar 

  • Suzuma I, Mandai M, Takagi H, Suzuma K, Otani A, Oh H, Kobayashi K, Honda Y (1999) 17 Beta-estradiol increases VEGF receptor-2 and promotes DNA synthesis in retinal microvascular endothelial cells. Investig Ophthalmol Vis Sci 40(9):2122–2129

    CAS  Google Scholar 

  • Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y (2006) Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett 167(2):95–105

    Article  PubMed  CAS  Google Scholar 

  • Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, vom Saal FS (2009) Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):2079–2096

    Google Scholar 

  • Thomas P, Dong J (2006) Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102(1–5):175–179

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118(8):1055–1070

    Article  PubMed  CAS  Google Scholar 

  • Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 32 Suppl 2:S314–S321

    Google Scholar 

  • Wozniak AL, Bulayeva NN, Watson CS (2005) Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ Health Perspect 113(4):431–439

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang L, Dou Y, Zhao J, Jiang T, Qiao Z, Qiao J (2002) Testosterone and estradiol modulate TNF-alpha-induced expression of adhesion molecules in endothelial cells. Methods Find Exp Clin Pharmacol 24(3):125–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Professor Björn Hellman for invaluable help with the preparation of manuscript and Raili Engdahl, Lena Norgren, Ida Jakobsson, and Fanar Sliwa for excellent technical assistance. We also thank The Swedish Research Council Forskningsrådet för miljö, areella näringar och samhällsbyggande (FORMAS) for funding.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Brittebo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 921 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, H., Brittebo, E. Proangiogenic effects of environmentally relevant levels of bisphenol A in human primary endothelial cells. Arch Toxicol 86, 465–474 (2012). https://doi.org/10.1007/s00204-011-0766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0766-2

Keywords

Navigation