Skip to main content
Log in

Functional screening of altered microRNA expression in 3-methylcholanthrene-treated human umbilical vein endothelial cells

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The common environmental contaminant 3-methylcholanthrene (3MC) is found in cigarette smoke and is produced by incomplete combustion of fat, wood and coal. 3MC is a poly aromatic hydrocarbon that interacts with an aryl hydrocarbon receptor and causes inflammation and induces vascular dysfunction; 3MC forms the DNA adducts structure and regulates cell cycle, which increase oxidative stress and inflammation. MicroRNAs (miRNAs) are non-coding RNA molecules that negatively regulate gene expression; these RNAs also play a role in cellular and molecular responses to toxicants, and can post-transcriptionally regulate gene expression. In this study, we examined whether miRNAs affect the regulation of gene expression in 3MC-treated human umbilical vein endothelial cells (HUVECs). We carried out pair-wise correlation analysis and identified 131 and 116 miRNAs with altered expression upon treatment of HUVECs with 100 nM and 1 μM 3MC, respectively. Furthermore, we identified 188 and 85 mRNAs with altered expression upon treatment with 100 nM and 1 μM 3MC; we subsequently analyzed their anti-correlations. The Gene Ontology (GO) enrichment analysis on the altered expression of miRNA-related genes displayed significant enrichment for genes involved in certain biological processes. Specifically, our results suggest that changes in miRNA expression caused by 3MC treatment are associated with inflammation of endothelial cells and may play a role in cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, Y. et al. Acute exposure to 3-methylcholanthrene induces hepatic oxidative stress via activation of the Nrf2/ARE signaling pathway in mice. Environ. Toxicol. 10, 1002 (2013).

    Google Scholar 

  2. Kwon, Y.W., Ueda, S., Ueno, M., Yodoi, J. & Masutani, H. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J. Biol. Chem. 277, 1837–844 (2002).

    Article  CAS  Google Scholar 

  3. Chiba, T., Uchi, H., Yasukawa, F. & Furue, M. Role of the arylhydrocarbon receptor in lung disease. Int. Arch. Allergy Immunol. 155 Suppl 1, 129–34 (2011).

    Article  CAS  Google Scholar 

  4. Timme-Laragy, A.R., Van Tiem, L.A., Linney, E.A. & Di Giulio, R.T. Antioxidant responses and NRF2 in synergistic developmental toxicity of PAHs in zebrafish. Toxicol. Sci. 109, 217–27 (2009).

    Article  CAS  Google Scholar 

  5. Juan, S.H., Lee, J.L., Ho, P.Y., Lee, Y.H. & Lee, W.S. Antiproliferative and antiangiogenic effects of 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, in human umbilical vascular endothelial cells. Eur. J. Pharmacol. 530, 1– (2006).

    Article  CAS  Google Scholar 

  6. Aboutabl, M.E., Zordoky, B.N. & El-Kadi, A.O. 3-methylcholanthrene and benzo(a)pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. Br. J. Pharmacol. 158, 1808–819 (2009).

    Article  CAS  Google Scholar 

  7. Kondraganti, S.R., Muthiah, K., Jiang, W.W., Barrios, R. & Moorthy, B. Effects of 3-methylcholanthrene on gene expression profiling in the rat using cDNA microarray analyses. Chem. Res. Toxicol. 18, 1634–641 (2005).

    Article  CAS  Google Scholar 

  8. Pang, P.H. et al. Molecular mechanisms of p21 and p27 induction by 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, involved in antiproliferation of human umbilical vascular endothelial cells. J. Cell. Physiol. 215, 161–71 (2008).

    Article  CAS  Google Scholar 

  9. Moorthy, B., Miller, K.P., Jiang, W.W. & Ramos, K.S. The atherogen 3-methylcholanthrene induces multiple DNA adducts in mouse aortic smooth muscle cells: role of cytochrome P4501B1. Cardiovascular Research 53, 1002–009 (2002).

    Article  CAS  Google Scholar 

  10. Iwano, S., Shibahara, N., Saito, T. & Kamataki, T. Activation of p53 as a causal step for atherosclerosis induced by polycyclic aromatic hydrocarbons. Febs Letters 580, 890–93 (2006).

    Article  CAS  Google Scholar 

  11. Yu, B. et al. Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. Plos One 6, e24612 (2011).

  12. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc. Res. 79, 581–88 (2008).

    Article  CAS  Google Scholar 

  13. Shivdasani, R.A. MicroRNAs: regulators of gene expression and cell differentiation. Blood 108, 3646–653 (2006).

    Article  CAS  Google Scholar 

  14. Fish, J.E. A primer on the role of microRNAs in endothelial biology and vascular disease. Semin. Nephrol. 32, 167–75 (2012).

    Article  CAS  Google Scholar 

  15. Paul, S. et al. Impact of miRNA deregulation on mRNA expression profiles in response to environmental toxicant, nonylphenol. Mol. Cell. Toxicol. 7, 259–69 (2011).

    CAS  Google Scholar 

  16. Lema, C. & Cunningham, M.J. MicroRNAs and their implications in toxicological research. Toxicol. Lett. 198, 100–05 (2010).

    Article  CAS  Google Scholar 

  17. Yang, H. et al. Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells. BioChip J. 7, 11–6 (2013).

    Article  CAS  Google Scholar 

  18. Menghini, R., Stohr, R. & Federici, M. MicroRNAs in vascular aging and atherosclerosis. Ageing Res. Rev. 03 (2014).

  19. Zampetaki, A., Dudek, K. & Mayr, M. Oxidative stress in atherosclerosis: The role of microRNAs in arterial remodeling. Free Radical Biology and Medicine 64, 69–7 (2013).

    Article  CAS  Google Scholar 

  20. Zhang, C. MicroRNAs: role in cardiovascular biology and disease. Clin. Sci. (Lond) 114, 699–06 (2008).

    Article  CAS  Google Scholar 

  21. Korashy, H.M. & El-Kadi, A.O. The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab. Rev. 38, 411–50 (2006).

    Article  CAS  Google Scholar 

  22. Lee, S.E. & Park, Y.S. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol. Cell. Toxicol. 9, 95–01 (2013).

    Article  CAS  Google Scholar 

  23. Celius, T. et al. Flavin-containing monooxygenase-3: induction by 3-methylcholanthrene and complex regulation by xenobiotic chemicals in hepatoma cells and mouse liver. Toxicol. Appl. Pharmacol. 247, 60–9 (2010).

    Article  CAS  Google Scholar 

  24. Paigen, B., Holmes, P.A., Morrow, A. & Mitchell, D. Effect of 3-methylcholanthrene on atherosclerosis in two congenic strains of mice with different susceptibilities to methylcholanthrene-induced tumors. Cancer Res. 46, 3321–324 (1986).

    CAS  Google Scholar 

  25. Bengestrate, L. et al. Genome-wide profiling of micro-RNAs in adipose mesenchymal stem cell differentiation and mouse models of obesity. Plos One 6, e21305 (2011).

  26. Maffei, R. et al. The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 98, 1115–123 (2013).

    Article  CAS  Google Scholar 

  27. Lim, W.C. & Chow, V.T. Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in five study models using differential display and real-time RT-PCR. Biochimie 88, 367–77 (2006).

    Article  CAS  Google Scholar 

  28. Croft, M. et al. TNF superfamily in inflammatory disease: translating basic insights. Trends Immunol. 33, 144–52 (2011).

    Google Scholar 

  29. Galeone, A., Paparella, D., Colucci, S., Grano, M. & Brunetti, G. The role of TNF-alpha and TNF superfamily members in the pathogenesis of calcific aortic valvular disease. Scientific World Journal 10, 10 (2013).

    Google Scholar 

  30. Majesky, M.W., Yang, H.Y., Benditt, E.P. & Juchau, M.R. Carcinogenesis and atherogenesis: differences in monooxygenase inducibility and bioactivation of benzo[a]pyrene in aortic and hepatic tissues of atherosclerosis- susceptible versus resistant pigeons. Carcinogenesis 4, 647–52 (1983).

    Article  CAS  Google Scholar 

  31. Lee, S.E. & Park, Y.S. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J. Ginseng Res. 38, 34–9 (2014).

    Article  Google Scholar 

  32. Park, H.R., Yang, H., Kim, G.D., Son, G.W. & Park, Y.S. Microarray analysis of gene expression in 3-methylcholanthrene-treated human endothelial cells. Mol. Cell. Toxicol. 10, 19–7 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seek Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.R., Lee, S.E., Yang, H. et al. Functional screening of altered microRNA expression in 3-methylcholanthrene-treated human umbilical vein endothelial cells. BioChip J 8, 260–268 (2014). https://doi.org/10.1007/s13206-014-8403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-8403-9

Keywords

Navigation