Skip to main content
Log in

A comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Although lead is widely recognized as a toxic substance in the environment and directly damage DNA, no studies are available on lead interaction with chromatin and histone proteins. In this work, we have examined the effect of lead nitrate on EDTA-soluble chromatin (SE chromatin), DNA and histones in solution using absorption and fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The results demonstrate that lead nitrate binds with higher affinity to chromatin than to DNA and produces an insoluble complex as monitored at 400 nm. Binding of lead to DNA decreases its Tm, increases its fluorescence intensity and exhibits hypochromicity at 210 nm which reveal that both DNA bases and the backbone participate in the lead–DNA interaction. Lead also binds strongly to histone proteins in the absence of DNA. The results suggest that although lead destabilizes DNA structure, in the chromatin, the binding of lead introduces some sort of compaction and aggregation, and the histone proteins play a key role in this aspect. This chromatin condensation, upon lead exposure, in turn may decrease fidelity of DNA, and inhibits DNA and RNA synthesis, the process that introduces lead toxicity at the chromatin level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PMSF:

Phenylmethylsulfonyl fluoride

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

MNase:

Micrococcal nuclease

References

  • Ahamed M, Siddiqui MKJ (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383:57–64

    Article  PubMed  CAS  Google Scholar 

  • Bartkowiak J, Kapuscinski J, Melamed MR, Darzynkiewicz Z (1989) Selective displacement of nuclear proteins by antitumor drugs having affinity for nucleic acids. Proc Natl Acad Sci USA 86:5151–5154

    Article  PubMed  CAS  Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512

    Article  PubMed  CAS  Google Scholar 

  • Bradbury EM (2004) Chromatin structure and dynamics: a historical perspective. In: Zlatanova J, Leuba SH (eds) Chromatin structure and dynamics: state of the art. Elsevier, Amsterdam

    Google Scholar 

  • Burgoyne LA, Wang MA, Atkinson MR (1970) Calcium dependent priming of DNA synthesis in isolated rat liver nuclei. Biochem Biophys Res Commun 39:254–259

    Article  PubMed  CAS  Google Scholar 

  • Chen TA, Smith MM, Le SY, Sternglanz R, Allfrey VG (1991) Nucleosome fractionation by mercury affinity chromatography. Contrasting distribution of transcriptionally active DNA sequences and acetylated histones in nucleosome fractions of wild-type yeast cells and cells expressing a histone H3 gene altered to encode a cysteine 110 residue. J Biol Chem 266:6489–6498

    PubMed  CAS  Google Scholar 

  • Fraisio da Silva JJR, Williams RJP (1993) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press, Oxford, pp 536–552

    Google Scholar 

  • Goering PL (1993) Lead–protein interactions as a basis for lead toxicity. Neurotoxicology 14:45–60

    PubMed  CAS  Google Scholar 

  • Goyer RA (1993) Lead toxicity: current concerns. Environ Health Perspect 100:177–187

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Liao Y, Lu C, Li G, Yu F, Zhi X, Xu J, Liu S, Liu M, Yang J (2006) Health effects of children aged 3–6 years induced by environmental lead exposure. Ecotoxicol Environ Saf 63:313–317

    Article  PubMed  CAS  Google Scholar 

  • Johns EW (1964) Studies on histones: preparative methods for histone fractions from calf thymus. Biochem J 92:55–59

    PubMed  CAS  Google Scholar 

  • Krieg EF Jr, Chrislip DW, Brightwell WS (2008) A meta analysis of studies investigating the effects of lead exposure on nerve conduction. Arch Toxicol 82:531–542

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA, Zakour RA (1980) Metals and genetic miscoding. In: Spiro TG (ed) Nucleic acid–metal ion interaction. Wiley, New York, p 115

    Google Scholar 

  • Müller YM, Rivero LB, Carvalho MC, Kobus K, Farina M, Nazari EM (2008) Behavioral impairments related to lead-induced developmental neurotoxicity in chicks. Arch Toxicol 82:445–451

    Article  PubMed  Google Scholar 

  • Patil AJ, Bhagwat VR, Patil JA, Dongre NN, Ambekar JG, Das KK (2006) Biochemical aspects of lead exposure in silver jewelry workers in western Maharashtra (India). J Basic Clin Physiol Pharmacol 17:213–129

    PubMed  CAS  Google Scholar 

  • Quintanilla-Vega B, Hoover D, Bal W, Silbergeld EK, Waalkes MP, Anderson LD (2000) Lead effects on protamine-DNA binding. Am J Ind Med 38:324–329

    Article  PubMed  CAS  Google Scholar 

  • Rabbani A, Iskandar M, Ausio J (1999) Daunomycin induced unfolding and aggregation of chromatin. J Biol Chem 274:18401–18406

    Article  PubMed  CAS  Google Scholar 

  • Ramesh GT, Manna SK, Aggarwal BB, Jadhav AL (2001) Lead exposure activates nuclear factor kappa B, activator protein-1, c-Jun N-terminal kinase and caspases in the rat brain. Toxicol Lett 123:195–207

    Article  PubMed  CAS  Google Scholar 

  • Rice D, Silbergeld D (1996) Lead neurotoxicity: concordance of human and animal research. In: Chang LW (ed) Toxicology of metals. CRC, Boca Raton, pp 659–676

    Google Scholar 

  • Roy N, Rossman T (1992) Mutagenesis and comutagenesis by lead compounds. Mutat Res 298:97–103

    Article  PubMed  CAS  Google Scholar 

  • Sequaris JM, Swiatek J (1991) Interaction of DNA with Pb2+: voltammetric and spectroscopic studies. Bioelectrochem Bioenerg 26:12–28

    Article  Google Scholar 

  • Shabani A, Rabbani A (2000) Lead nitrate induced apoptosis in alveolar macrophages from rat lung. Toxicology 149:109–114

    Article  PubMed  CAS  Google Scholar 

  • Sigel H, Hofstetter F (1983) Metal-ion-promoted dephosphorylation of the 5-triphosphates of uridine and thymidine, and a comparison with the reactivity in the corresponding cytidine and adenosine nucleotide systems. Eur J Biochem 132:569–577

    Article  PubMed  CAS  Google Scholar 

  • Silbergeld EK, Waalkes M, Rice MJ (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am J Ind Med 38:316–323

    Article  PubMed  CAS  Google Scholar 

  • Sunderman FW, Barber AM (1988) Finger-loops, oncogenes, and metals. Claude Passmore Brown memorial lecture. Ann Clin Lab Sci 18:267–288

    PubMed  CAS  Google Scholar 

  • Tajmir-Riahi HA, Langlais M, Savoie R (1988) A laser Raman spectroscopic study of the interaction of calf thymus DNA with Cu (II) and Pb(II) ions: metal ion binding and DNA conformational changes. Nucleic Acids Res 16:751–762

    Article  PubMed  CAS  Google Scholar 

  • Thiesen HJ, Bach C (1991) Transition metals modulate DNA–protein interactions of SP1 zinc finger domains with its cognate target site. Biochem Biophys Res Commun 176:551–557

    Article  PubMed  CAS  Google Scholar 

  • Valle BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium and lead. Annu Rev Biochem 41:91–128

    Article  Google Scholar 

  • Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol. doi:10.1007/s00204-2008-0345-3

  • Wedrychowski A, Schmidt WN, Hnilica LS (1986) The in vivo cross-linking of proteins and DNA by heavy metals. J Biol Chem 261:3370–3376

    PubMed  CAS  Google Scholar 

  • White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, Rossi-George A, Lasley SM, Qian YC, Basha MR (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225:1–27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work was provided by the Research Council (grant #1017/01) of the University of Tehran to A. Rabbani-Chadegani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Rabbani-Chadegani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabbani-Chadegani, A., Abdosamadi, S., Fani, N. et al. A comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution. Arch Toxicol 83, 565–570 (2009). https://doi.org/10.1007/s00204-008-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0362-2

Keywords

Navigation