Skip to main content

Advertisement

Log in

Metallothionein attenuates carmustine-induced oxidative stress and protects against pulmonary fibrosis in rats

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The present study was carried out to evaluate the effect of exogenously administered metallothionein (MT) against carmustine (BCNU)-induced lung toxicity in rats. A total of 60 rats were randomly divided into four groups (15/group): control group in which the animals received 0.5 ml physiologic saline containing 10% ethanol (IP) weekly, MT-administered group in which rats received MT (30 μmol/kg, IP) weekly, BCNU-administered group in which rats received BCNU (5 mg/kg, IP) weekly and MT + BCNU group in which rats received weekly doses of BCNU (5 mg/kg, IP) followed 24 h later by MT (30 μmol/kg, IP). At the end of the experiment (after 6 weeks), lung histological changes, collagen staining, the activity of glutathione reductase (GR) and contents of reduced glutathione (GSH) and hydroxyproline (Hpr) in the lung as well as serum level of tumor necrosis factor-alpha (TNF-α) were evaluated. The obtained data revealed that BCNU induced pathological changes and markedly increased lung collagen and level of Hpr but decreased GSH content and GR activity and increased serum TNF-α compared to both control and MT-administered rats. Administration of MT + BCNU markedly improved histological features and decreased staining of collagen along with increased GR activity, GSH content but decreased level of Hpr in lung tissue as well as decreased serum level of TNF-α compared with BCNU-treated rats. Based on our results, it is possible to postulate that exogenous MT can act against BCNU-induced lung toxicity by a mechanism related, at least in part, to its ability to decrease oxidative stress and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abushamaa AM, Sporn TA, Folz RJ (2002) Oxidative stress and inflammation contribute to lung toxicity after a common breast cancer chemotherapy regimen. Am J Physiol Lung Cell Mol Physiol 283(2):L336–L345

    PubMed  CAS  Google Scholar 

  • Cai L, Klein JB, Kang YJ (2000) Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem 275(50):38957–38960

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 14:5475–5480

    Google Scholar 

  • Coyle P, Philcox JC, Rofe AM (1995) Metallothionein induction in cultured rat hepatocytes by arthritic rat serum, activated macrophages, interleukin-6, interleukin-1 and leukaemia inhibitory factor. Inflamm Res 44:475–481

    Article  PubMed  CAS  Google Scholar 

  • De Lisle RC, Sarras MP Jr, Hidalgo J, Andrews GK (1996) Metallothionein is a component of exocrine pancreas secretion: implications for zinc homeostasis. Am J Physiol 271:C1103–C1110

    PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Haddad JJ (2000) Glutathione depletion is associated with augmenting a proinflammatory signal: evidence for an antioxidant/pro-oxidant mechanism regulating cytokines in the alveolar epithelium. Cytokines Cell Mol Ther 6(4):177–187

    PubMed  CAS  Google Scholar 

  • Haddad JJ (2002) Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappa B nuclear translocation and activation. Biochem Biophys Res Commun 296(4):847–856

    Article  PubMed  CAS  Google Scholar 

  • Haddad JJ, Safieh-Garabedian B, Saadé NE, Land SC (2001) Thiol regulation of pro-inflammatory cytokines reveals a novel immunopharmacological potential of glutathione in the alveolar epithelium. J Pharmacol Exp Ther 296(3):996–1005

    PubMed  CAS  Google Scholar 

  • Haïdara K, Moffatt P, Denizeau F (1999) Metallothionein induction attenuates the effects of glutathione depletors in rat hepatocytes. Toxicol Sci 49(2):297–305

    Article  PubMed  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Hardwick SJ, Adam A, Smith LL, Cohen GM (1990) A novel lung slice system with compromised antioxidant defenses. Environ Health Perspect 85:129–133

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Fujimotom M, Kikuchi K, Takehara K (1997) Elevated serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: association with pulmonary fibrosis. J Rheumatol 24:663–665

    PubMed  CAS  Google Scholar 

  • Hishikawa Y, Abe S, Kinugasa S, Yoshimura H, Monden N, Igarashi M, Tachibana M, Nagasue N (1997) Overexpression of metallothionein correlates with chemoresistance to cisplatin and prognosis in esophageal cancer. Oncology 54(4):342–347

    Article  PubMed  CAS  Google Scholar 

  • Kara H, Karatas F, Canatan H, Servi K (2005) Effects of exogenous metallothionein on acute cadmium toxicity in rats. Biol Trace Elem Res 104(3):223–232

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (1983) The effect of BCNU (carmustine) on tissue glutathione reductase activity. Toxicol Lett 17(1–2):63–68

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP, Klein-Szanto AJ (1985) Enhanced acute lung damage in mice following administration of 1, 3-bis (2-chloroethyl)-1-nitrosourea. Cancer Res 45(11 Pt 2):5707–5713

    PubMed  CAS  Google Scholar 

  • Kollias G (2004) Modeling the function of tumor necrosis factor in immune pathophysiology. Autoimmun Rev 3(Suppl 1):S24–S25

    PubMed  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor super families: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  • Lowery OH, Rosenbrough NJ, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:256–275

    Google Scholar 

  • Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD (1994) Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA 91:584–588

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Muraoka S, Ogiso T (1997) Antioxidant activity of metallothionein compared with reduced glutathione. Life Sci 60:301–309

    Article  Google Scholar 

  • Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE, Kollias G, Aidinis V (2006) Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS ONE 1(1):e108

    Article  PubMed  CAS  Google Scholar 

  • Pearce LL, Gandley RE, Han W et al (2000) Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 97:477–482

    Article  PubMed  CAS  Google Scholar 

  • Penkowa M, Hidalgo J (2001) Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE). Exp Neurol 170(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Piguet PF, Collart MA, Grau GE, Sappino AP, Vassalli P (1990) Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature 344:245–247

    Article  PubMed  CAS  Google Scholar 

  • Reddy GK, Enwemeka CS (1996) Simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem 29(3):225–229

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  PubMed  CAS  Google Scholar 

  • Sener G, Topaloğlu N, Sehirli AO, Ercan F, Gedik N (2007) Resveratrol alleviates bleomycin-induced lung injury in rats. Pulm Pharmacol Ther 20(6):642–649

    Article  PubMed  CAS  Google Scholar 

  • Smith AC, Boyd MR (1984) Preferential effects of 1, 3-bis (2-chloroethyl)-1-nitrosourea (BCNU) on pulmonary glutathione reductase and glutathione/glutathione disulfide ratios: possible implications for lung toxicity. J Pharmacol Exp Ther 229:658–663

    PubMed  CAS  Google Scholar 

  • Thornalley PJ, Vasak M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    PubMed  CAS  Google Scholar 

  • Walker MD, Gehan EA (1976) Clinical studies in malignant gliomas and their treatment with the nitrosoureas. Cancer Treat Rep 60:713–718

    PubMed  CAS  Google Scholar 

  • Weiss RB, Poster DS, Penta JS (1981) The nitrosoureas and pulmonary toxicity. Cancer Treat Rev 8:111–124

    Article  PubMed  CAS  Google Scholar 

  • Wesselkamper SC, Mc Dowell SA, Medvedovic M, Dalton TP, Deshmukh HS, Sartor MA, Case LM, Henning LN, Borchers MT, Tomlinson CR, Prows DR, Leikauf GD (2006) The role of metallothionein in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 34(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Kelley MR, Hansen WK, Martin WJ (2001) Reduction of BCNU toxicity to lung cells by high-level expression of O(6)-methylguanine-DNA methyltransferase. Am J Physiol Lung Cell Mol Physiol 280(4):L755–L761

    PubMed  CAS  Google Scholar 

  • Wülfing C, van Ahlen H, Eltze E, Piechota H, Hertle L, Schmid KW (2007) Metallothionein in bladder cancer: correlation of overexpression with poor outcome after chemotherapy. World J Urol 25(2):199–205

    Article  PubMed  CAS  Google Scholar 

  • Youn J, Lynes MA (1999) Metallothionein induced suppression of cytotoxic T lymphocyte function: an important immunoregulatory control. Toxicol Sci 52(2):199–208

    Article  PubMed  CAS  Google Scholar 

  • Youn J, Hwang SH, Ryoo ZY, Lynes MA, Paik DJ, Chung HS, Kim HY (2002) Metallothionein suppresses collagen-induced arthritis via induction of TGF-β and down-regulation of proinflammatory mediators. Clin Exp Immunol 129(2):232–239

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by grant (C. P. R. C. 175) from Research Center, College of Pharmacy, King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouda Kamel Helal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helal, G.K., Helal, O.K. Metallothionein attenuates carmustine-induced oxidative stress and protects against pulmonary fibrosis in rats. Arch Toxicol 83, 87–94 (2009). https://doi.org/10.1007/s00204-008-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0325-7

Keywords

Navigation