Skip to main content

Advertisement

Log in

Effects of eicosane, a component of nanoparticles in diesel exhaust, on surface activity of pulmonary surfactant monolayers

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Recently, it has been reported that n-alkanes are principal components of diesel exhaust nanoparticles. We investigated the effects of n-alkanes on the surface activity of a pulmonary surfactant monolayer using both fresh surfactant isolated from mouse lungs, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), a major component of lung surfactant. To examine the effect of n-alkanes on the surfactant, we compared surface pressure/trough area isotherm features and topographic images of DPPC in the presence and absence of a specific n-alkane (eicosane, C20H42) by Langmuir–Wilhelmy methods. The pure DPPC isotherm shows a typical plateau feature at a monolayer collapse pressure of 70 mN/m. The collapse pressure diminishes with increasing concentration of eicosane in DPPC. DPPC monolayers containing eicosane exhibit isotherms with one phase transition, but not the coexistence plateau of a liquid-expanded (LE) and liquid-condensed (LC) phase observed with a pure DPPC monolayer. Atomic force microscopy studies suggest that a DPPC monolayer containing eicosane has the phase transition from LE phase to LC phase and the protrusions are squeezed out from the monolayer, below the phase transition. On the other hand, eicosane changes the isotherm from mouse lung surfactant less dramatically than that of DPPC. The addition of increasing amounts of eicosane to mouse surfactant increases surface compressibility at 30 mN/m during the second compression, suggesting that the deposition of alkane-rich nanoparticles onto pulmonary surfactants may be related to dysfunction of surfactant activity during breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen DG, Riviere JE, Monteiro-Riviere NA (2001) Analysis of interleukin-8 release from normal human epidermal keratinocytes exposed to aliphatic hydrocarbons: delivery of hydrocarbons to cell cultures via complexation with alpha-cyclodextrin. Toxicol In Vitro 15:663–669

    Article  PubMed  CAS  Google Scholar 

  • Bracco D, Favre JB (1998) Pulmonary injury after ski wax inhalation exposure. Ann Emerg Med 32:616–619

    Article  PubMed  CAS  Google Scholar 

  • Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, Koopman LP, Neijens HJ, Gerritsen J, Kerkhof M, Heinrich J, Bellander T, Brunekreef B (2002) Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med 166:1092–1098

    Article  PubMed  Google Scholar 

  • Chou CC, Riviere JE, Monteiro-Riviere NA (2003) The cytotoxicity of jet fuel aromatic hydrocarbons and dose-related interleukin-8 release from human epidermal keratinocytes. Arch Toxicol 77:384–391

    Article  PubMed  CAS  Google Scholar 

  • Churg A, Brauer M (2000) Ambient atmospheric particles in the airways of human lungs. Ultrastruct Pathol 24:353–361

    Article  PubMed  CAS  Google Scholar 

  • Ding JQ, Takamoto DY, von Nahmen A, Lipp MM, Lee KYC, Waring AJ, Zasadzinski JA (2001) Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability. Biophys J 80:2262–2272

    PubMed  CAS  Google Scholar 

  • Discher BM, Maloney KM, Schief WR, Grainger DW, Vogel V, Hall SB (1996) Lateral phase separation in interfacial films of pulmonary surfactant. Biophys J 71:2583–2590

    Article  PubMed  CAS  Google Scholar 

  • Fechter LD, Gearhart C, Fulton S, Campbell J, Fisher J, Na K, Cocker D, Nelson-Miller A, Moon P, Pouyatos B (2007) JP-8 jet fuel can promote auditory impairment resulting from subsequent noise exposure in rats. Toxicol Sci 98:510–525

    Article  PubMed  CAS  Google Scholar 

  • Geller MD, Ntziachristos L, Mamakos A, Samaras Z, Schmitz DA, Froines JR, Sioutas C (2006) Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos Environ 40:6988–7004

    Article  CAS  Google Scholar 

  • Gregory TJ, Longmore WJ, Moxley MA, Whitsett JA, Reed CR, Fowler AA, Hudson LD, Maunder RJ, Crim C, Hyers TM (1991) Surfactant chemical-composition and biophysical activity in acute respiratory-distress syndrome. J Clin Invest 88:1976–1981

    Article  PubMed  CAS  Google Scholar 

  • Gunther A, Ruppert C, Schmidt R, Markart P, Grimminger F, Walmrath D, Seeger W (2001) Surfactant alteration and replacement in acute respiratory distress syndrome. Respir Res 2:353–364

    Article  PubMed  CAS  Google Scholar 

  • Haagsman HP (1994) Surfactant protein-A and protein-D. Biochem Soc Trans 22:100–106

    PubMed  CAS  Google Scholar 

  • Hills BA (1999) An alternative view of the role(s) of surfactant and the alveolar model. J Appl Physiol 87:1567–1583

    PubMed  CAS  Google Scholar 

  • Hirano S, Nitta H, Moriguchi Y, Kobayashi S, Kondo Y, Tanabe K, Kobayashi T, Wakamatsu S, Morita M, Yamazaki S (2003) Nanoparticles in emissions and atmospheric environment: now and future. J Nanopart Res 5:311–321

    Article  CAS  Google Scholar 

  • Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360:1203–1209

    Article  PubMed  Google Scholar 

  • Janz S, Shacter E (1995) Disposition of the plasmacytomagenic alkane pristane (2,6,10,14-tetramethylpentadecane) in mice. Cancer Biochem Biophys 15:25–34

    PubMed  CAS  Google Scholar 

  • Janz S, Gawrisch K, Lester DS (1995) Translocation and activation of protein-kinase-C by the plasma-cell tumor-promoting alkane pristane. Cancer Res 55:518–524

    PubMed  CAS  Google Scholar 

  • Johansson J, Curstedt T, Robertson B (1994) The proteins of the surfactant system. Eur Respir J 7:372–391

    Article  PubMed  CAS  Google Scholar 

  • Keough K (2003) How thin can glass be? New ideas, new approaches. Biophys J 85:2785–2786

    PubMed  CAS  Google Scholar 

  • Kim K, Kim C, Byun Y (2001) Preparation of a dipalmitoylphosphatidylcholine/cholesterol Langmuir–Blodgett monolayer that suppresses protein adsorption. Langmuir 17:5066–5070

    Article  CAS  Google Scholar 

  • Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29:575–588

    Article  CAS  Google Scholar 

  • Kittelson DB, Watts WF, Johnson JP (2006) On-road and laboratory evaluation of combustion aerosols—Part 1: Summary of diesel engine results. J Aerosol Sci 37:913–930

    Article  CAS  Google Scholar 

  • Krol S, Ross M, Sieber M, Kunneke S, Galla HJ, Janshoff A (2000) Formation of three-dimensional protein-lipid aggregates in monolayer films induced by surfactant protein B. Biophys J 79:904–918

    Article  PubMed  CAS  Google Scholar 

  • Liau DF, Barrett CR, Bell ALL, Ryan SF (1985) Normal surface-properties of phosphatidylglycerol-deficient surfactant from dog after acute lung injury. J Lipid Res 26:1338–1344

    PubMed  CAS  Google Scholar 

  • Nag K, Keough KMW (1993) Epifluorescence microscopic studies of monolayers containing mixtures of dioleoylphosphatidylcholines and dipalmitoylphosphatidylcholines. Biophys J 65:1019–1026

    PubMed  CAS  Google Scholar 

  • Nag K, Perez-Gil J, Ruano MLF, Worthman LAD, Stewart J, Casals C, Keough KMW (1998) Phase transitions in films of lung surfactant at the air-water interface. Biophys J 74:2983–2995

    PubMed  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  • Panda AK, Nag K, Harbottle RR, Rodriguez-Capote K, Veldhuizen RAW, Petersen NO, Possmayer F (2004) Effect of acute lung injury on structure and function of pulmonary surfactant films. Am J Respir Cell Mol Biol 30:641–650

    Article  PubMed  CAS  Google Scholar 

  • Pastranarios B, Flach CR, Brauner JW, Mautone AJ, Mendelsohn R (1994) A direct test of the squeeze-out hypothesis of lung surfactant function—external reflection Ft-Ir at the air/water interface. Biochemistry 33:5121–5127

    Article  CAS  Google Scholar 

  • Phalen RF, Oldham MJ, Nel AE (2006) Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol Sci 92:126–132

    Article  PubMed  CAS  Google Scholar 

  • Pirjola L, Paasonen P, Pfeiffer D, Hussein T, Hameri K, Koskentalo T, Virtanen A, Ronkko T, Keskinen J, Pakkanen TA, Hillamo RE (2006) Dispersion of particles and trace gases nearby a city highway: mobile laboratory measurements in Finland. Atmos Environ 40:867–879

    Article  CAS  Google Scholar 

  • Pleil JD, Smith LB, Zelnick SD (2000) Personal exposure to JP-8 jet fuel vapors and exhaust at Air Force bases. Environ Health Perspect 108:183–192

    Article  PubMed  CAS  Google Scholar 

  • Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Tobias HJ, Park K, Zarling D, Docherty S, Kittelson DB, McMurry PH, Ziemann PJ (2003) On-line measurements of diesel nanoparticle composition and volatility. Atmos Environ 37:1199–1210

    Article  CAS  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955

    PubMed  Google Scholar 

  • Slotte JP, Mattjus P (1995) Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface—a comparative-study with 2 different reporter molecules. Biochim Biophys Acta 1254:22–29

    PubMed  Google Scholar 

  • Takamoto DY, Lipp MM, von Nahmen A, Lee KYC, Waring AJ, Zasadzinski JA (2001) Interaction of lung surfactant proteins with anionic phospholipids. Biophys J 81:153–169

    PubMed  CAS  Google Scholar 

  • Taneva S, Keough KMW (1994) Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water-interface.1. monolayers of pulmonary surfactant protein SP-B and phospholipids. Biophys J 66:1137–1148

    PubMed  CAS  Google Scholar 

  • Yang JH, Lee CH, Monteiro-Riviere NA, Riviere JE, Tsang CL, Chou CC (2006) Toxicity of jet fuel aliphatic and aromatic hydrocarbon mixtures on human epidermal keratinocytes: evaluation based on in vitro cytotoxicity and interleukin-8 release. Arch Toxicol 80:508–523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanae Kanno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, S., Furuyama, A. & Hirano, S. Effects of eicosane, a component of nanoparticles in diesel exhaust, on surface activity of pulmonary surfactant monolayers. Arch Toxicol 82, 841–850 (2008). https://doi.org/10.1007/s00204-008-0306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-008-0306-x

Keywords

Navigation