Skip to main content

Advertisement

Log in

Miltefosine decreases the cytotoxic effect of Epirubicine and Cyclophosphamide on mouse spermatogenic, thymic and bone marrow cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A new class of potent anticancer drugs, alkylphosphocholines has been recognized lately. Miltefosine (Hexadecylphosphochlorine, HPC) has been found to express select antineoplastic effect on human breast cancer skin metastases with simultaneous preservation of bone marrow proliferative activity and low clastogenicity. In the current study, we present data about the specific effect of two widely used cytostatics Cyclophosphamide (CP) and Epirubicine (ERb) applied separately or in combination with Miltefosine. C57BL6 mice were treated per os or intraperitonieally in doses corresponding to that in clinical use. Morphological, autoradiographic, ultrastructural and cytogenetic studies on spermatogenic, thymic and bone marrow cells were performed. It is found that compared with separate application, combinations of ERb or CP with Miltefosine slightly decreases spermatogonial proliferation and exerts milder effect on the structure of germinal and thymic cells. In addition, a lot of plasmocytes showed signs of active protein (antibody) synthesis. A significant reduction of aberrant chromosomes (clastogenicity) without changes in proliferative activity of bone marrow cells were recorded. In conclusion, the combine application of Miltefosine with ERb and CP decreased the destructive cytotoxic effects of ERb and CP on mouse spermatogenic and hematopoietic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berger MR, Muschiol C, Schmaehl D, Eibl H (1987) New cytostatics with experimentally different toxic profiles. Cancer Treat Rev 14: 307–317

    Article  PubMed  CAS  Google Scholar 

  • Berger MR, Tsoneva I, Konstantinov SM, Eibl H (2003) Induction of apoptosis by erucylphospho-N,N,N-trimethylpropylammonium is associated with changes in signal molecule expression and location. Ann N Y Acad Sci 1010:307–310

    Google Scholar 

  • Brachwitz H, Vollgraf C (1995) Analogs of alkyllysophospholipids: chemistry, effects on the molecular level and their consequences for normal and malignant cells. Pharmacol Ther 66: 39–82

    Article  PubMed  CAS  Google Scholar 

  • Dixon J, Brown M, Engelman L, Jendrich R (1990) BMDP statistical software manual. UCLA Press, Berkely

    Google Scholar 

  • Duijsings D, Houweling M, Vaandrager A, Mol J, Teerds K (2004) Hexadecylphosphocholine causes rapid cell death in canine mammary tumor cells. Eur J Pharmacol 505: 185–193

    Article  CAS  Google Scholar 

  • Eibl H, Engel J (1992) Synthesis of hexadecylphosphocholine (miltefosine). In: Eibl H, Hilgard P, Unger C (eds) New drugs in cancer therapy. Karger, Basel, pp. 1–5

    Google Scholar 

  • Georgieva MC, Konstantinov SM, Topashka-Ancheva M, Berger MR (2002) Combination effects of alkylphosphocholines and gemcitabine in malignant and normal hematopoietic cells. Cancer Lett 182:163–174

    Article  PubMed  CAS  Google Scholar 

  • Hanson P, Malone L, Birchmore J, Nichols J (2003) Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, adelfosine and miltefosine. J Biol Chem 278:36041–36050

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J (2001) Modulation of protein kinase C in antitumor treatment. Rev Physiol Biochem Pharmacol 142:1–96

    Article  PubMed  CAS  Google Scholar 

  • Houlihan WJ, Lohmeyer M, Workman P, Cheon SH (1995) Phospholipid antitumor agents. Med Res Rev 15:157–159

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek V, Kurger W, Erlendbruch B, Eibl H, Lakomek M (2001) Erucyclophosphocholine-induced apoptosis in chemoresistent glioblastoma cell lines: involvemt of caspase activation and mitochondrial alterations. Anticancer Res 21: 3389–3396

    PubMed  CAS  Google Scholar 

  • Jendrossek V, Handrick R (2003) Membrane targeted anticancer drugs: potent inducers of apoptosis and putative radiosensitisers. Cur Med Chem Anti-Canc Agents 3:343–353

    Article  CAS  Google Scholar 

  • Jendrossek V, Muller I, Eibl H, Belka C (2003) Intracellular mediators of erucylphosphocholine-induced apoptosis. Oncogene 22: 2621–2631

    Article  PubMed  CAS  Google Scholar 

  • Klenner T, Beckers T, Nooter K, Holtmann H (1996) Influence of hexadecylphosphocholine (miltefosine) on cytokine synthesis and biological responses. In: Nigam A (eds) Platelet activating factor and related lipid mediators 2. Plenum, New York, pp 181–187

    Google Scholar 

  • Konstantinov SM, Topashka-Ancheva M, Benner A, Berger M (1998a) Alkylphosphocholines: effects on human leukemic cell lines and normal bone marrow cells. Int J Cancer 77:778–786

    Article  CAS  Google Scholar 

  • Konstantinov SM, Eibl H, Berger M (1998b) Alkylphosphocholines induce apoptosis in HL-60 and U-937 leukemic cells. Cancer Chemother Pharmacol 41:210–216

    Article  CAS  Google Scholar 

  • Konstantinov SM, Eibl H, Berger MR (1999) BCR-ABL influences the antileukemic efficacy of alkylphosphocholines. Br J Haematol 107:365–374

    Article  PubMed  CAS  Google Scholar 

  • Krishna G, Nath Y, Ong T (1986) Inhibition of Cyclophosphamide and Mitomycin C induced sister Chromatid Exchanges in mice by vit. C Cancer Res 46(6):2670–2672

    Google Scholar 

  • Krishna G, Theiss JC, (1995) Concurrent analysis of cytogenetic damage in vitro: a multiple endpoint-multiple tissue approach. Environ Mutagen 25: 314–320

    Article  CAS  Google Scholar 

  • Krustev L (1982) Mitochondria. In: Krustev L, Valkov I, Raichev R, Prokopanov Ch (eds) Ultrastructural basis of pathology (in bulgarian). Medizina i Fizkultura, Sofia, pp 92–119

    Google Scholar 

  • Preston RJ, Dean B, Galloway S, Holden H, McFee AF, Sheldy M (1987) Mammalian in vivo cytogenetic assay analysis of chromosome aberrations in bone marrow cells. Mutation Res 189:157–165

    Article  PubMed  CAS  Google Scholar 

  • Stekar J, Hilgard P, Klennee T (1995) Opposite effect of miltefosine on the antineoplastic activity and haematological toxicity of cyclophosphamide. Eur J Cancer 31A:372–374

    Article  PubMed  CAS  Google Scholar 

  • Topashka-Ancheva M, Karaivanova M, Botev M (1989) Cytostatic and cytogenetic effects of Farmorubicin. Compt rend Acad bulg Sci 42:83–86

    CAS  Google Scholar 

  • Topashka-Ancheva M, Botev M, Karaivanova M (1990) Cytostatic and clastogenic effects of combination of farmorubicin and extract of algae in experimental animals. Compt rend Acad bulg Sci 43:95–98

    Google Scholar 

  • Unger C, Sindermann H, Peukert M, Hilgard P, Engel J, Eibl H (1992) Hexadecylphosphocholine in the topical treatment of skin metastases in breast cancer. Prog Exp Tumor Res 34:153–159

    PubMed  CAS  Google Scholar 

  • Vehmeyer K, Eibl H, Unger C (1992) Hexadecylphosphocholine stimulates the colony stimulating factor dependent growth of haematopoietic progenitor cells. Exp Hematol 20: 1–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Topashka-Ancheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinova, Y., Topashka-Ancheva, M., Konstantinov, S. et al. Miltefosine decreases the cytotoxic effect of Epirubicine and Cyclophosphamide on mouse spermatogenic, thymic and bone marrow cells. Arch Toxicol 80, 27–33 (2006). https://doi.org/10.1007/s00204-005-0010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-005-0010-z

Keywords

Navigation