Skip to main content

Advertisement

Log in

Maternal exposure to nicotine and chlorpyrifos, alone and in combination, leads to persistently elevated expression of glial fibrillary acidic protein in the cerebellum of the offspring in late puberty

  • Developmental Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract.

We previously showed that maternal exposure to nicotine, alone or in combination with chlorpyrifos, caused an increase in glial fibrillary acidic protein (GFAP) immunostaining in the CA1 subfield of hippocampus and cerebellum in postnatal day (PND) 30 offspring. In the present study, PND 60 offspring were evaluated for histopathological and cholinergic effects following maternal exposure to nicotine and chlorpyrifos, alone and in combination. Timed-pregnant Sprague-Dawley rats (300–350 g) were treated daily with nicotine (1 mg/kg, s.c., in normal saline) or chlorpyrifos (0.1 mg/kg, dermal, in ethanol) or a combination of nicotine and chlorpyrifos from gestational days (GD) 4 to 20. Control animals were treated with saline and ethanol. On PND 60, the offspring were evaluated for cholinergic changes and pathological effects. Plasma butyrylcholinesterase (BChE) activity in the female offspring from chlorpyrifos treated mothers showed a significant increase (~183% of control). Male offspring from mothers treated with either chlorpyrifos or nicotine alone showed a significant increase in the acetylcholinesterase (AChE) activity in the brainstem while female offspring from mothers treated with either nicotine or a combination of nicotine and chlorpyrifos showed a significant increase (~134 and 126% of control, respectively) in AChE activity in the brainstem. No significant changes were observed in the ligand binding densities for α4β2 and α7 nicotinic acetylcholine receptors in the cortex. Histopathological evaluation using cresyl violet staining showed a significant decrease in surviving Purkinje neurons in the cerebellum of the offspring from nicotine treated mothers. An increase in GFAP immunostaining in cerebellar white matter was observed in the offspring from the mothers treated with nicotine. These results suggest that maternal exposure to real-life levels of nicotine and/or chlorpyrifos causes differential regulation of brainstem AChE activity. Also, nicotine caused a decrease in the surviving neurons and an increased expression of GFAP in cerebellar white matter of the offspring on PND 60. These changes can lead to long-term neurological adverse health effects later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A, B
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahman A, Shetty AK, Abou-Donia MB (2001) Subchronic dermal application of DEET and permethrin to adult rats alone or in combination causes diffuse neuronal cell death and cytoskeletal abnormalities in the cerebral cortex and hippocampus and Purkinje neuron loss in the cerebellum. Exp Neurol 172:153–171

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Rahman A, Shetty AK, Abou-Donia MB (2002) Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: dose-response relationships. Neuroscience 113:721–741

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Rahman A, Dechkovskaia A, Mehta-Simmons H, Guan X, Khan W, Abou-Donia M (2003) Increased expression of glial fibrillary acidic protein in cerebellum and hippocampus: differential effects on neonatal brain regional acetylcholinesterase following maternal exposure to combined chlorpyrifos and nicotine. J Toxicol Environ Health A 66:2047–2066

    CAS  PubMed  Google Scholar 

  • Abou-Donia MB, Wilmarth KR, Jensen KF, Oehme FW, Kurt TL (1996) Neurotoxicity resulting from co-exposure to pyridostigmine bromide, DEET, and permethrin: implications of Gulf War chemical exposures. J Toxicol Environ Health 48:35–56

    CAS  PubMed  Google Scholar 

  • Abu-Qare AW, Abdel-Rahman A, Brownie C, Kishk AM, Abou-Donia MB (2001) Inhibition of cholinesterase enzymes following a single dermal dose of chlorpyrifos and methyl parathion, alone and in combination, in pregnant rats. J Toxicol Environ Health A 63:173–189

    CAS  PubMed  Google Scholar 

  • Ahlsen G, Rosengren L, Belfrage M, Palm A, Haglid K, Hamberger A, Gillberg C (1993) Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatr 15:734–743

    Article  Google Scholar 

  • Altman J, Bayer SA (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301:365–381

    CAS  PubMed  Google Scholar 

  • Ashry KM, Abu-Qare AW, Saleem FR, Hussein YA, Hamza SM, Kishk AM, Abou-Donia MB (2002) Inhibition and recovery of maternal and fetal cholinesterase enzymes following a single oral dose of chlorpyrifos in rats. Arch Toxicol 76:30–39

    Article  CAS  PubMed  Google Scholar 

  • Atarashi R, Sakaguchi S, Shigematsu K, Arima K, Okimura N, Yaguchi N, Li A, Kopacek J, Katamine S (2001) Abnormal activation of glial cells in the brains of prion protein-deficient mice ectopically expressing prion protein-like protein, PrPLP/Dp1. Mol Med 7:803–809

    CAS  PubMed  Google Scholar 

  • Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–661

    CAS  PubMed  Google Scholar 

  • Bigbee JW, Sharma KV, Chan ELP, Bogler O (2000) Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res 861:354–362

    Article  CAS  PubMed  Google Scholar 

  • Brimijoin S, Koenigsberger C (1999) Cholinesterases in neural development: new findings and toxicological implications. Environ Health Perspect 107 Suppl 1:59–64

    Google Scholar 

  • Butrum D, Silverstein FS (1993) Excitotic injury stimulates glial fibrillary acidic protein mRNA expression in perinatal rat brain. Exp Neurol 121:127–132

    Article  PubMed  Google Scholar 

  • Clarke C, Clarke K, Muneyyirci J, Azmitia E, Whitaker-Azmitia PM (1996) Prenatal cocaine delays astroglial maturation: immunodensitometry shows increased markers of immaturity (vimentin and GAP-43) and decreased proliferation and production of the growth factor S-100. Dev Brain Res 91:268–273

    Article  CAS  Google Scholar 

  • Clegg DJ, van Gemert M (1999a) Expert panel report of human studies on chlorpyrifos and/or other organophosphate exposures. J Toxicol Environ Health B 2:257–279

    Article  CAS  PubMed  Google Scholar 

  • Clegg DJ, van Gemert M (1999b) Determination of the reference dose for chlorpyrifos: proceedings of an expert panel. J Toxicol Environ Health B 2:211–255

    Article  CAS  Google Scholar 

  • Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57000 daltons protein of fibroblast filaments is the major cytoskeletal component in immature glia. Eur J Cell Biol 24:191–196

    CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetycholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Eriksson P, Ankarberg E, Fredriksson A (2000) Exposure to nicotine during a defined period in neonatal life induces permanent changes in brain nicotinic receptors and in behavior of adult mice. Brain Res 853:41–48

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Sarrailh CA, Rami A, Fages C, Tardy M (1991) Effect of thyroid deficiency on GFAP and GFAP-mRNA in the cerebellum and hippocampal formation of the developing rat. Glia 4:276–284

    CAS  PubMed  Google Scholar 

  • Fattore L, Puddu MC, Picciau S, Cappai A, Fratta W, Serra GP, Spiga S (2002) Astroglial in vivo response to cocaine in mouse dentate gyrus: a quantitative and qualitative analysis by confocal microscopy. Neuroscience 110:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fenske RA, Black KG, Elkner KP, Lee C, Methner MM, Soto R (1990) Potential exposure and health risks of infants following indoor residential pesticide applications. Am J Public Health 80:689–693

    CAS  PubMed  Google Scholar 

  • Garcia SJ, Seidler FJ, Qiao D, Slotkin TA (2002) Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Dev Brain Res 133:151–161

    Article  CAS  Google Scholar 

  • Giulian D, Young DG, Woodward J, Brown DC, Lachman LB (1988) Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 8:709–714

    CAS  PubMed  Google Scholar 

  • Gurunathan S, Robson M, Freeman N, Buckley B, Roy A, Meyer R, Bukowski J, Lioy PJ (1998) Accumulation of chlorpyrifos on residential surfaces and toys accessible to children. Environ Health Perspect 106:9–16

    CAS  PubMed  Google Scholar 

  • Hellstrom-Lindahl E, Court JA (2000) Nicotine-induced alterations in the expression of nicotinic acetylcholine receptors during prenatal development and brain pathology in human aging. Behav Brain Res 113:159–168

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann D, Hoffmann I (1997) The changing cigarette, 1950–1995. J Toxicol Environ Health 50:35–56

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin peroxidase (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  • Huff RA, Corcoran JJ, Anderson JK, Abou-Donia MB (1994) Chlorpyrifos oxon binds directly to muscarinic receptors and inhibits cAMP accumulation in rat striatum. J Pharmacol Exp Ther 269:329–335

    CAS  PubMed  Google Scholar 

  • Johnson JG, Cohen P, Pine DS, Klein DF, Kasen S, Brook JS (2000) Association between cigarette smoking and anxiety disorders during adolescence and early adulthood. J Am Med Assoc 284:2348–2351

    Article  CAS  Google Scholar 

  • Katz EJ, Cortes VI, Eldefrawi ME, Eldefrawi AT (1997) Chlorpyrifos, parathion and their oxons bind to and desensitize a nicotinic acetylcholine receptor: relevance to their toxicities. Toxicol Appl Pharmacol 146:227–236

    CAS  PubMed  Google Scholar 

  • Kawa K (2002) Acute synaptic modulation by nicotinic agonists in developing cerebellar Purkinje cells of the rat. J Physiol 538:87–102

    Article  CAS  PubMed  Google Scholar 

  • Koenigsberger C, Hammond P, Brimijoin S (1998) Developmental expression of acetyl- and butyrylcholinesterase in the rat: enzyme and mRNA levels in embryonic dorsal root ganglia. Brain Res 787:248–258

    Article  CAS  PubMed  Google Scholar 

  • Kristjansdottir R, Uvebrant P, Rosengren L (2001) Glial fibrillary acidic protein and neurofilament in the children with cerebral white matter abnormalities. Neuropediatrics 32:307–312

    CAS  PubMed  Google Scholar 

  • Lassiter TL, Barone S Jr, Padilla S (1998a) Ontogenic differences in the regional and cellular acetylcholinesterase and butyrylcholinesterase activity in the rat brain. Dev Brain Res 105:109–123

    Article  CAS  Google Scholar 

  • Lassiter TL, Padilla S, Mortensen MR, Chanda SM, Moser VC, Barone S Jr (1998b) Gestational exposure to chlorpyrifos: apparent protection of the fetus? Toxicol Appl Pharmacol 152:56–65

    CAS  PubMed  Google Scholar 

  • Lassiter TL, Barone S Jr, Moser VC, Padilla S (1999) Gestational exposure to chlorpyrifos: dose-response profiles for cholinesterase and carboxyesterase activity. Toxicol Sci 52:92–100

    Article  CAS  PubMed  Google Scholar 

  • Liedtke W, Edelman W, Bieri PL, Chin FC, Cowen NJ, Kucherlpati R, Raine CS (1996) GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17:607–615

    CAS  PubMed  Google Scholar 

  • Little AR, Benkovic SA, Miller DB, O’Callaghan JP (2002) Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein MCP-1), without a corresponding increase in proinflammatory cytokines. Neuroscience 115:307–320

    Article  CAS  PubMed  Google Scholar 

  • Martin JC, Becker RF (1970) The effects of nicotine administration in utero upon activity in the rat. Psychopharmacol Sci 19:59–60

    Google Scholar 

  • Naeye RL (1992) Cognitive and behavioral abnormalities in children whose mothers smoked cigarettes during pregnancy. J Dev Behav Pediatr 13:425–428

    CAS  PubMed  Google Scholar 

  • Nordberg A, Zhang X, Fredriksson A, Eriksson P (1991) Neonatal nicotine exposure induces permanent changes in brain nicotinic receptors and behavior in adult mice. Dev Brain Res 63:201–207

    Google Scholar 

  • O’Callaghan JP (1993) Quantitative features of reactive gliosis following toxicant-induced damage of the CNS. Ann N Y Acad Sci 679:195–210

    CAS  PubMed  Google Scholar 

  • Penky M, Stannes K, Eliasson C, Betsholtz C, Janigro D (1998) Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia 22:390–400

    Article  PubMed  Google Scholar 

  • Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ (1999) J Pharmacol Exp Ther 289:1545–1552

    Google Scholar 

  • Pletnikov MV, Rubin SA, Vasudevan K, Moran TH Carbone KM (1999) Develomental brain injury associated with abnormal play behavior in neonatally Borna disease virus-infected Lewis rats: a model of autism. Behav Brain Res 100:43–50

    Article  CAS  PubMed  Google Scholar 

  • Pope CN (1999) Organophosphorus pesticides: do they all have the same mechanism of toxicity? J Toxicol Environ Health B 2:161–181

    Article  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological functions. Trends Neurosci 20:570−577

    PubMed  Google Scholar 

  • Roy TS, Seidler FJ, Slotkin TA (2002) Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex. J Pharmacol Exp Ther 300:124–133

    Article  CAS  PubMed  Google Scholar 

  • Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T, Fujimoto K, Katoh A, Ikeda T, Chen C, Thompson RF, Itohara S (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16:587–599

    CAS  PubMed  Google Scholar 

  • Slotkin TA (1998) Fetal nicotine or cocaine exposure: which is worse? J Pharmacol Exp Ther 285:931–945

    CAS  PubMed  Google Scholar 

  • Slotkin TA (1999) Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect 107:71–80

    CAS  PubMed  Google Scholar 

  • Slotkin TA, Orband-Miller L, Queen KL (1986) Development of [3H]nicotine binding sites in the brain regions of rats exposed to nicotine prenatal via maternal injection or infusions. J Pharmacol Exp Ther 242:232–237

    Google Scholar 

  • Slotkin TA, Epps TA, Stenger ML, Sawyer KJ, Seidler FJ (1999) Cholinergic receptors in heart and brainstem of rats exposed to nicotine during development: implications for hypoxia tolerance and prenatal mortality. Brain Res Dev Brain Res 113:1–12

    CAS  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner LH, Provenzo MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    PubMed  Google Scholar 

  • Sternfeld M, Ming G, Song K, Sela R, Timberg M, Poo, Soreq H (1998) Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci 18:1240–1249

    CAS  PubMed  Google Scholar 

  • Tsuneishi S, Takada S, Motoike T, Ohashi T, Sano K, Nakamura H (1991) Effects of dexamethasone on the expression of myelin basic protein, proteolipid protein, and glial fibrillary acidic protein genes in developing rat brain. Dev Brain Res 61:117–123

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2000) Administrator’s announcement. http//www.epa.gov/pesticides/announcements6800html, accessed 11 October

  • Zhang X, Liu C, Miao H, Gong Z, Nordberg A (1998) Postnatal changes of nicotininc acetylcholine receptor in rat brain. Int J Neurosci 16:507–518

    Article  CAS  Google Scholar 

  • Zheng Q, Olivier K, Won YK, Pope CN (2000) Comparative cholinergic neurotoxicity of oral chlorpyrifos exposures in preweanling and adult rats. Toxicol Sci 55:124–132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

The work was financially supported by the US EPA (EPA grant #R829399-01-0). The views, opinion and/or findings contained in this report are those of the authors and should not be construed as an official US EPA policy or decision unless so designated by other documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed B. Abou-Donia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Rahman, A., Dechkovskaia, A.M., Mehta-Simmons, H. et al. Maternal exposure to nicotine and chlorpyrifos, alone and in combination, leads to persistently elevated expression of glial fibrillary acidic protein in the cerebellum of the offspring in late puberty. Arch Toxicol 78, 467–476 (2004). https://doi.org/10.1007/s00204-004-0560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0560-5

Keywords

Navigation