Skip to main content

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The developing central nervous system is susceptible to exposure to many different classes of chemicals and environmental pollutants and this is also true for the PFCs. In epidemiological studies it has been seen that kids from mothers with high PFOS and PFOA concentrations show delayed motor and cognitive development and the prevalence of ADHD is higher in these children. The epidemiological findings are supported by several studies in laboratory animals, where it has been seen that PFOS, PFOA and PFHxS exposures during the gestational period increased the locomotor activity and caused an inability to habituate to new environments. These chemicals also affects molecular targets in the brain of test animals after gestational exposure and in the newborn period and the cholinergic system may be a possible target for the PFCs. Also in cell culture studies PFCs have been shown to be neurotoxic and affect different subtypes of PKC, strengthening the animal studies. All these possible effects of PFCs are similar to what earlier have been seen for PCBs and PBDEs and there may be possible problems with co-exposures from these different groups of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FTOH:

Fluorotelomer alcohol

PFBA:

Perfluorobutyric acid

PFBS:

Perfluorobutane sulfonic acid

PFC:

Perfluoroalkylated compounds

PFDA:

Perfluorododecanoic acid

PFHpA:

Perfluoroheptanoic acid

PFHSor PFHxS:

Perfluorohexanesulfonic acid

PFHxA:

Perfluorohexanoic acid

PFNA:

Perfluorononanoic acid

PFOA:

Perfluorooctanoic acid

PFOC:

1H-perfluorooctane

PFOS:

Perfluorooctanesulfonic acid

PFOSA:

Perfluorooctanesulfonamide

PFPA:

Perfluoropropionic acid

PFTA:

Perfluorotetradecanoic acid

TFAA:

Trifluoroacetic acid

References

  • Antignac JP, Veyrand B, Kadar H, Marchand P, Oleko A, Le Bizec B, Vandentorren S (2013) Occurrence of perfluorinated alkylated substances in breast milk of French women and relation with socio-demographical and clinical parameters: results of the ELFE pilot study. Chemosphere 91:802–808

    Article  CAS  PubMed  Google Scholar 

  • Apelberg BJ, Goldman LR, Calafat AM, Herbstman JB, Kuklenyik Z, Heidler J, Needham LL, Halden RU, Witter FR (2007) Determinants of fetal exposure to polyfluoroalkyl compounds in Baltimore, Maryland. Environ Sci Technol 41:3891–3897

    Article  CAS  PubMed  Google Scholar 

  • Barkley RA (1998) Attention-deficit hyperactivity disorder. Sci Am 279:66–71

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113:1250–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG (2009a) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: developmental neurotoxicity. Reprod Toxicol 27:319–330

    Article  CAS  PubMed  Google Scholar 

  • Butenhoff JL, Chang SC, Ehresman DJ, York RG (2009b) Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reprod Toxicol 27:331–341

    Article  CAS  PubMed  Google Scholar 

  • Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, Lau C, Lieder PH, van Otterdijk FM, Wallace KB (2012) Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod Toxicol 33:513–530

    Article  CAS  PubMed  Google Scholar 

  • Cassone CG, Vongphachan V, Chiu S, Williams KL, Letcher RJ, Pelletier E, Crump D, Kennedy SW (2012) In ovo effects of perfluorohexane sulfonate and perfluorohexanoate on pipping success, development, mRNA expression, and thyroid hormone levels in chicken embryos. Toxicol Sci 127:216–224

    Article  CAS  PubMed  Google Scholar 

  • Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, Butenhoff JL (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol 27:387–399

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Das SR, La Du J, Corvi MM, Bai C, Chen Y, Liu X, Zhu G, Tanguay RL, Dong Q, Huang C (2013) Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring. Environ Toxicol Chem 32:201–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi SK, Kim JH, Park JK, Lee KM, Kim E, Jeon WB (2013) Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid. Food Chem Toxicol 60:520–529

    Article  CAS  PubMed  Google Scholar 

  • Dreiem A, Rykken S, Lehmler HJ, Robertson LW, Fonnum F (2009) Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells. Toxicol Appl Pharmacol 240:306–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and neurotoxicology. Neurotoxicology 33:586–604

    Article  CAS  PubMed  Google Scholar 

  • Eriksson P (1998) Perinatal developmental neurotoxicity of PCBs. Swedish Environmental Protection Agency, Stockholm, p 56

    Google Scholar 

  • Eriksson P, Jakobsson E, Fredriksson A (2001) Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect 109:903–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fei C, McLaughlin JK, Lipworth L, Olsen J (2008) Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ Health Perspect 116:1391–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fonnum F (1998) Excitotoxicity in the brain. Arch Toxicol Suppl 20:387–395

    Article  CAS  PubMed  Google Scholar 

  • Fonnum F, Myhrer T, Paulsen RE, Wangen K, Oksengard AR (1995) Role of glutamate and glutamate receptors in memory function and Alzheimer’s disease. Ann N Y Acad Sci 757:475–486

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Colomina MT, Vicens P, Domingo JL (2007a) Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice. Toxicol Lett 171:162–170

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Colomina MT, Vicens P, Franco-Pons N, Domingo JL (2007b) Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci 98:589–598

    Article  CAS  PubMed  Google Scholar 

  • Fuentes S, Vicens P, Colomina MT, Domingo JL (2007c) Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology 242:123–129

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  CAS  PubMed  Google Scholar 

  • Grandjean P, Weihe P, Debes F, Choi AL, Budtz-Jorgensen E (2014) Neurotoxicity from prenatal and postnatal exposure to methylmercury. Neurotoxicol Teratol 43C:39–44

    Article  Google Scholar 

  • Halliwell B, Guttenridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Harada KH, Ishii TM, Takatsuka K, Koizumi A, Ohmori H (2006) Effects of perfluorooctane sulfonate on action potentials and currents in cultured rat cerebellar Purkinje cells. Biochem Biophys Res Commun 351:240–245

    Article  CAS  PubMed  Google Scholar 

  • Hardell L, Lindstrom G, Van Bavel B (2002) Is DDT exposure during fetal period and breast-feeding associated with neurological impairment? Environ Res 88:141–144

    Article  CAS  PubMed  Google Scholar 

  • Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ Health Perspect 118:1762–1767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, Kishi R, Nakazawa H (2004) Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect 112:1204–1207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson N (2009) Neonatal exposure to highly brominated diphenyl ethers and perfluorinated compounds. Developmental dependent toxicity and interaction. Acta Univ. Ups., Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology., Environmental Toxicology, Uppsala University, Uppsala, p 67

    Google Scholar 

  • Johansson N, Fredriksson A, Eriksson P (2008) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29:160–169

    Article  CAS  PubMed  Google Scholar 

  • Johansson N, Eriksson P, Viberg H (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci 108:412–418

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto K, Sato I, Tsuda S, Yoshida M, Yaegashi K, Saito N, Liu W, Jin Y (2011) Ultrasonic-induced tonic convulsion in rats after subchronic exposure to perfluorooctane sulfonate (PFOS). J Toxicol Sci 36:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kodavanti PR, Shafer TJ, Ward TR, Mundy WR, Freudenrich T, Harry GJ, Tilson HA (1994) Differential effects of polychlorinated biphenyl congeners on phosphoinositide hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain Res 662:75–82

    Article  CAS  PubMed  Google Scholar 

  • Kodavanti PR, Derr-Yellin EC, Mundy WR, Shafer TJ, Herr DW, Barone S, Choksi NY, MacPhail RC, Tilson HA (1998) Repeated exposure of adult rats to Aroclor 1254 causes brain region-specific changes in intracellular Ca2+ buffering and protein kinase C activity in the absence of changes in tyrosine hydroxylase. Toxicol Appl Pharmacol 153:186–198

    Article  CAS  PubMed  Google Scholar 

  • Lai BC, Marion SA, Teschke K, Tsui JK (2002) Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 8:297–309

    Article  CAS  PubMed  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74:382–392

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Viberg H (2013) A single neonatal exposure to perfluorohexane sulfonate (PFHxS) affects the levels of important neuroproteins in the developing mouse brain. Neurotoxicology 37:190–196

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Lee YJ, Yang JH (2012) Perfluorooctane sulfonate induces apoptosis of cerebellar granule cells via a ROS-dependent protein kinase C signaling pathway. Neurotoxicology 33:314–320

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Lee HG, Yang JH (2013) Perfluorooctane sulfonate-induced apoptosis of cerebellar granule cells is mediated by ERK 1/2 pathway. Chemosphere 90:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Choi SY, Yang JH (2014a) NMDA receptor-mediated ERK 1/2 pathway is involved in PFHxS-induced apoptosis of PC12 cells. Sci Total Environ 491:227–2234

    Article  PubMed  Google Scholar 

  • Lee YJ, Choi SY, Yang JH (2014b) PFHxS induces apoptosis of neuronal cells via ERK1/2-mediated pathway. Chemosphere 94:121–127

    Article  CAS  PubMed  Google Scholar 

  • Levitt D, Liss A (1986) Toxicity of perfluorinated fatty acids for human and murine B cell lines. Toxicol Appl Pharmacol 86:1–11

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Li XY, Wu B, Duan S, Jiang GB (2008) Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol 42:5335–5341

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Wang T, Cui L, Zhou Q, Duan S, Jiang G (2009a) Changes in synaptic transmission, calcium current, and neurite growth by perfluorinated compounds are dependent on the chain length and functional group. Environ Sci Technol 43:2099–2104

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Cui L, Zhou QF, Duan SM, Jiang GB (2009b) Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons. Environ Toxicol Pharmacol 27:338–344

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu W, Song J, Yu H, Jin Y, Oami K, Sato I, Saito N, Tsuda S (2009) A comparative study on oxidative damage and distributions of perfluorooctane sulfonate (PFOS) in mice at different postnatal developmental stages. J Toxicol Sci 34:245–254

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Liu W, Jin Y, Yu W, Wang F, Liu L (2010a) Effect of gestational and lactational exposure to perfluorooctanesulfonate on calcium-dependent signaling molecules gene expression in rats’ hippocampus. Arch Toxicol 84:71–79.

    Google Scholar 

  • Liu X, Liu W, Jin Y, Yu W, Liu L, Yu H (2010b) Effects of subchronic perfluorooctane sulfonate exposure of rats on calcium-dependent signaling molecules in the brain tissue. Arch Toxicol 84:471–479

    Google Scholar 

  • Liu X, Jin Y, Liu W, Wang F, Hao S (2011) Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons. Toxicol In Vitro 25:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL (2005) Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 215:126–148

    Google Scholar 

  • Mariussen E (2012) Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 86:1349–1367

    Article  CAS  PubMed  Google Scholar 

  • Mariussen E, Fonnum F (2006) Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit Rev Toxicol 36:253–289

    Article  CAS  PubMed  Google Scholar 

  • Mariussen E, Myhre O, Reistad T, Fonnum F (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: the involvement of the N-methyl-D-aspartate receptor and reactive oxygen species. Toxicol Appl Pharmacol 179:137–144

    Article  CAS  PubMed  Google Scholar 

  • Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J (2007) Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. Int Arch Occup Environ Health 80:643–648

    Article  CAS  PubMed  Google Scholar 

  • Milner B (1972) Disorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg 19:421–446

    CAS  PubMed  Google Scholar 

  • Mondal D, Weldon RH, Armstrong BG, Gibson LJ, Lopez-Espinosa MJ, Shin HM, Fletcher T (2014) Breastfeeding: a potential excretion route for mothers and implications for infant exposure to perfluoroalkyl acids. Environ Health Perspect 122:187–192

    PubMed Central  PubMed  Google Scholar 

  • Monroy R, Morrison K, Teo K, Atkinson S, Kubwabo C, Stewart B, Foster WG (2008) Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res 108:56–62

    Article  CAS  PubMed  Google Scholar 

  • Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J (2010) Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol 32:182–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qazi MR, Bogdanska J, Butenhoff JL, Nelson BD, DePierre JW, Abedi-Valugerdi M (2009) High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology 262:207–214

    Article  CAS  PubMed  Google Scholar 

  • Reistad T, Mariussen E, Ring A, Fonnum F (2007) In vitro toxicity of tetrabromobisphenol-A on cerebellar granule cells: cell death, free radical formation, calcium influx and extracellular glutamate. Toxicol Sci 96:268–278

    Article  CAS  PubMed  Google Scholar 

  • Reistad T, Fonnum F, Mariussen E (2013) Perfluoroalkylated compounds induce cell death and formation of reactive oxygen species in cultured cerebellar granule cells. Toxicol Lett 218:56–60

    Article  CAS  PubMed  Google Scholar 

  • Ribes D, Fuentes S, Torrente M, Colomina MT, Domingo JL (2010) Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice. Toxicol Appl Pharmacol 243:13–18

    Article  CAS  PubMed  Google Scholar 

  • Rice DC (2000) Parallels between attention deficit hyperactivity disorder and behavioral deficits produced by neurotoxic exposure in monkeys. Environ Health Perspect 108(Suppl 3):405–408

    Article  PubMed Central  PubMed  Google Scholar 

  • Sato I, Kawamoto K, Nishikawa Y, Tsuda S, Yoshida M, Yaegashi K, Saito N, Liu W, Jin Y (2009) Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J Toxicol Sci 34:569–574

    Article  CAS  PubMed  Google Scholar 

  • Schettler T (2001) Toxic threats to neurologic development of children. Environ Health Perspect 109(Suppl 6):813–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162:234–243

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Liu C, Wu G, Zhou B (2009) Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. Chemosphere 77:1010–1018

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, MacKillop EA, Melnick RL, Thayer KA, Seidler FJ (2008) Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ Health Perspect 116:716–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L, Negri S, Di Tuccio M, Ceccatelli S (2014) PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in Zebrafish larvae. PLoS One 9:e94227

    Article  PubMed Central  PubMed  Google Scholar 

  • Stein CR, Savitz DA (2011) Serum perfluorinated compound concentration and attention deficit/hyperactivity disorder in children 5–18 years of age. Environ Health Perspect 119:1466–1471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stein CR, Savitz DA, Dougan M (2009) Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol 170:837–846

    Article  PubMed  Google Scholar 

  • Sundstrom M, Ehresman DJ, Bignert A, Butenhoff JL, Olsen GW, Chang SC, Bergman A (2011) A temporal trend study (1972–2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int 37:178–183

    Article  PubMed  Google Scholar 

  • Tao L, Kannan K, Wong CM, Arcaro KF, Butenhoff JL (2008) Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environ Sci Technol 42:3096–3101

    Article  CAS  PubMed  Google Scholar 

  • Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbuhler K (2008) Estimating consumer exposure to PFOS and PFOA. Risk Anal 28:251–269

    Article  PubMed  Google Scholar 

  • Ulhaq M, Orn S, Carlsson G, Morrison DA, Norrgren L (2013) Locomotor behavior in zebrafish (Danio rerio) larvae exposed to perfluoroalkyl acids. Aquat Toxicol 144–145:332–340

    Article  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2002) Neonatal exposure to the brominated flame retardant 2,2′,4,4′,5-pentabromodiphenyl ether causes altered susceptibility in the cholinergic transmitter system in the adult mouse. Toxicol Sci 67:104–107

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2003a) Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 192:95–106

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Jakobsson E, Orn U, Eriksson P (2003b) Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci 76:112–120

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2007) Changes in spontaneous behaviour and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). Neurotoxicology 28:136–142

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Lee I, Eriksson P (2013) Adult dose-dependent behavioral and cognitive disturbances after a single neonatal PFHxS dose. Toxicology 304:185–191

    Article  CAS  PubMed  Google Scholar 

  • Victor M, Angevine JB Jr, Mancall EL, Fisher CM (1961) Memory loss with lesions of hippocampal formation. Report of a case with some remarks on the anatomical basis of memory. Arch Neurol 5:244–263

    Article  CAS  PubMed  Google Scholar 

  • Wan Ibrahim WN, Tofighi R, Onishchenko N, Rebellato P, Bose R, Uhlen P, Ceccatelli S (2013) Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARgamma in vitro and in vivo. Toxicol Appl Pharmacol 269:51–60

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Liu W, Jin Y, Dai J, Yu W, Liu X, Liu L (2010) Transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain. Environ Sci Technol 44:1847–1853

    Article  PubMed  Google Scholar 

  • Wang X, Li B, Zhao WD, Liu YJ, Shang DS, Fang WG, Chen YH (2011) Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 410:258–263

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Derr-Yellin EC, Kodavanti PR (2003) Alterations in brain protein kinase C isoforms following developmental exposure to a polychlorinated biphenyl mixture. Brain Res Mol Brain Res 111:123–135

    Article  CAS  PubMed  Google Scholar 

  • Zeng HC, Li YY, Zhang L, Wang YJ, Chen J, Xia W, Lin Y, Wei J, Lv ZQ, Li M, Xu SQ (2011a) Prenatal exposure to perfluorooctanesulfonate in rat resulted in long-lasting changes of expression of synapsins and synaptophysin. Synapse 65:225–233

    Article  CAS  PubMed  Google Scholar 

  • Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, Wei J, Xu SQ (2011b) Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology 32:130–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li YY, Chen T, Xia W, Zhou Y, Wan YJ, Lv ZQ, Li GQ, Xu SQ (2011) Abnormal development of motor neurons in perfluorooctane sulphonate exposed zebrafish embryos. Ecotoxicology 20:643–652

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Viberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viberg, H., Mariussen, E. (2015). Neurotoxicity. In: DeWitt, J. (eds) Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15518-0_9

Download citation

Publish with us

Policies and ethics