Skip to main content
Log in

Euonymus japonicus phyllosphere microbiome is significantly changed by powdery mildew

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Euonymus japonicus Thunb. is a woody and ornamental plant popular in China, Europe and North America. Powdery mildew is one of the most serious diseases that affect E. japonicus growth. In this study, the diseased and apparently healthy leaves were collected from E. japonicus planted in a greenbelt in Beijing, and the effect of powdery mildew on the epiphytic microbial community was investigated by using Illumina sequencing. The results showed that the healthy leaves (HL) harbored greater bacterial and fungal diversity than diseased leaves (DL). Furthermore, both bacterial and fungal communities in DL exhibited significantly different structures from those in HL. The relative abundance of several bacterial phyla (Proteobacteria and Firmicutes) and fungal phyla (Ascomycota and Basidiomycota) were altered by powdery mildew. At the genus level, most genera decreased as powdery mildew pathogen Erysiphe increased, while the genera Kocuria and Exiguobacterium markedly increased. Leaf properties, especially protein content was found to significantly affect beta-diversity of the bacterial and fungal community. Network analysis revealed that positive bacterial interactions in DL were stronger than those in HL samples. Insights into the underlying the indigenous microbial phyllosphere populations of E. japonicus response to powdery mildew will help in the development of methods for controlling plant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Awadhi H, Al-Mailem D, Dashti N, Hakam L, Eliyas M, Radwan S (2012) The abundant occurrence of hydrocarbon-utilizing bacteria in the phyllospheres of cultivated and wild plants in Kuwait. Int Biodeterior Biodegrad 73:73–79

    Article  CAS  Google Scholar 

  • Aydogan EL, Moser G, Muller C, Kampfer P, Glaeser SP (2018) Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Front Microbiol 9:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (2008) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y (2017) Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front Plant Sci 8:2202

    Article  PubMed  PubMed Central  Google Scholar 

  • Dees MW, Lysoe E, Nordskog B, Brurberg MB (2015) Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time. Appl Environ Microbiol 81:1530–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois M (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enya J, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536

    Article  CAS  PubMed  Google Scholar 

  • Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77:7647–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert. Appl Environ Microbiol 78:6187–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokkema NJ (1993) Opportunities and problems of control of foliar pathogens with microorganisms. Pestic Sci 37:411–416

    Article  Google Scholar 

  • Fort T, Robin C, Capdevielle X, Deliere L, Vacher C (2016) Foliar fungal communities strongly differ between habitat patches in a landscape mosaic. PeerJ 4:e2656

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchiary N, Choi S-R, Lim YP, Piao ZY (2012) Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. pekinensis). Sci Hortic 147:42–48

    Article  CAS  Google Scholar 

  • Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, Vilhjalmsson BJ, Nordborg M, Gordon JI, Bergelson J (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:5320

    Article  PubMed  Google Scholar 

  • Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  • Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C (2016) Deciphering the pathobiome: intra- and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microb Ecol 72:870–880

    Article  CAS  PubMed  Google Scholar 

  • Kadivar H, Stapleton AE (2003) Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb Ecol 45:353–361

    Article  CAS  PubMed  Google Scholar 

  • Kaparullina EN, Doronina NV, Mustakhimov II, Agafonova NV, Trotsenko YA (2017) Biodiversity of aerobic methylobacteria associated with the phyllosphere of the southern Moscow region. Microbiology 86:113–118

    Article  CAS  Google Scholar 

  • Karlsson I, Friberg H, Kolseth AK, Steinberg C, Persson P (2017) Organic farming increases richness of fungal taxa in the wheat phyllosphere. Mol Ecol 26:3424–3436

    Article  CAS  PubMed  Google Scholar 

  • Karthick P, Mohanraju R (2018) Antimicrobial potential of epiphytic bacteria associated with seaweeds of Little Andaman, India. Front Microbiol 9:611

    Article  PubMed  PubMed Central  Google Scholar 

  • Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci USA 111:13715–13720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728

    Article  CAS  PubMed  Google Scholar 

  • Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Lee SK, Lee SH, Cho SE, Shin HD (2015) First report of powdery mildew caused by Erysiphe euonymicola on Euonymus fortunei var. radicans in Korea. Plant Dis 99:556

    Article  Google Scholar 

  • Lopez-Velasco G, Welbaum GE, Boyer RR, Mane SP, Ponder MA (2011) Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons. J Appl Microbiol 110:1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA (2013) Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346:146–154

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira AO, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:10

    Article  Google Scholar 

  • Ma JS (2001) A revision of Euonymus (Celastraceae). Thaiszia 11:1–264

    CAS  Google Scholar 

  • Qi FH, Jing TZ, Wang ZX, Zhan YG (2009) Fungal endophytes from Acer ginnala Maxim: isolation, identification and their yield of gallic acid. Lett Appl Microbiol 49:98–104

    Article  CAS  PubMed  Google Scholar 

  • Qi F, Jing T, Zhan Y (2012) Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7:e46785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JH (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10

    Article  CAS  PubMed  Google Scholar 

  • Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol 58:189–198

    Article  PubMed  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren GD, Zhang HY, Lin XG, Zhu JG, Jia ZJ (2014) Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Appl Microbiol Biotechnol 98:9459–9471

    Article  CAS  PubMed  Google Scholar 

  • Rezki S, Campion C, Simoneau P, Jacques M-A, Shade A, Barret M (2017) Assembly of seed-associated microbial communities within and across successive plant generations. Plant Soil 422:67–79

    Article  CAS  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2016) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167:222–233

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sgroy V, Cassan F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Suda W, Nagasaki A, Shishido M (2009) Powdery mildew-infection changes bacterial community composition in the phyllosphere. Microbes Environ 2:217–223

    Article  Google Scholar 

  • Truchado P, Gil MI, Reboleiro P, Rodelas B, Allende A (2017) Impact of solar radiation exposure on phyllosphere bacterial community of red-pigmented baby leaf lettuce. Food Microbiol 66:77–85

    Article  PubMed  Google Scholar 

  • Ueda Y, Frindte K, Knief C, Ashrafuzzaman M, Frei M (2016) Effects of elevated tropospheric ozone concentration on the bacterial community in the phyllosphere and rhizoplane of rice. PLoS One 11:e0163178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterseher M, Siddique AB, Brachmann A, Persoh D (2016) Diversity and composition of the leaf mycobiome of Beech (Fagus sylvatica) are affected by local habitat conditions and leaf biochemistry. PLoS One 11:e0152878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Liu Y, Feng K, Li S, Wang S, Jin D, Zhang Y, Chen H, Yin H, Xu M, Deng Y (2018) The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci Total Environ 628–629:969–978

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Xie WY, Su JQ, Zhu YG (2015) Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing. Appl Environ Microbiol 81:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin XF, Nomura K, Aung K, Velasquez AC, Yao J, Boutrot F, Chang JH, Zipfel C, He SY (2016) Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yánez-Mendizábal V, Falconí CE (2018) Efficacy of Bacillus spp. to biocontrol of anthracnose and enhance plant growth on Andean lupin seeds by lipopeptide production. Biol Control 122:67–75

    Article  CAS  Google Scholar 

  • Zhang Z, Luo L, Tan X, Kong X, Yang J, Wang D, Zhang D, Jin D, Liu Y (2018) Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere. PeerJ 6:e4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X (2010) Functional molecular ecological networks. MBio 1:e00169-00110

    Google Scholar 

  • Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio 2:e00122-00111

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2017YFD0800102), the National Natural Science Foundation of China (Nos. 31500083 and 31601642) and the Innovation Platform and Talent Plan (2016RS2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decai Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Kong, X., Jin, D. et al. Euonymus japonicus phyllosphere microbiome is significantly changed by powdery mildew. Arch Microbiol 201, 1099–1109 (2019). https://doi.org/10.1007/s00203-019-01683-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01683-3

Keywords

Navigation