Skip to main content
Log in

Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdallah RAB, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Baize D, Sterckeman T (2001) The necessity of knowledge of the natural pedogeochemical background content in the evaluation of the contamination of soils by trace elements. Sci Total Environ 264:127–139

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements- review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barcellos FG, Menna P, da Batista JSS, Hungria M (2007) Evidence of horizontal transfer of symbioticgenes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  Google Scholar 

  • Barrientos L, Badilla A, Mera M, Montenegro A, Gaete N, Espinoza N (2003) Performance of Rhizobium strains isolated from Lathyrus sativus plants growing in southern Chile. Lathyrus Lathyrism Newslett 3:8–9

    Google Scholar 

  • Beladi M, Kashani A, Habibi D, Paknejad F, Golshan M (2011) Uptake and effects of lead and copper on three plant species in contaminated soils: Role of phytochelation. Afr J Agric Res 6:3483–3492

    Google Scholar 

  • Borremans B, Hobman A, Provoost NL, Brown DV (2001) Cloning and functional analysis of the Pbr lead resistance determinant of Ralstonia metalludurans CH34. J Bacteriol 183:5651–5658

    Article  CAS  Google Scholar 

  • Bouyoucos GJ (1936) Directions for making mechanical analyses of soils by the hydrometer method. Soil Sci 42:225–229

    Article  CAS  Google Scholar 

  • Brink M, Belay G (2006) Ressources végétales de l’Afrique tropicale 1: céréales et légumes secs. Fondaton Prota, Wageningen

    Google Scholar 

  • Brunet J, Repellin A, Varrault G, Terryn N, Zuily-Fodil Y (2008) Lead accumulation in the roots of grass pea (Lathyrus sativus. L): a novel plant for phytoremediation system? C R Biol 331:859–864

    Article  CAS  Google Scholar 

  • Chauhan M, Solanki M (2015) Isolation of cadmium resistant bacteria for environmental clean-up. Int J Pharm Res 7:29–33 

    Google Scholar 

  • Chiboub M, Saadani O, Challougui Fatnassi I, Abdelkrim S, Abid G, Jebara M, Harzalli Jebara S (2016) Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. C R Biologies 339:391–398

    Article  Google Scholar 

  • Chiboub M, Jebara SH, Saadani O, Fatnassi IC, Abdelkerim S, Jebara M (2018) Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. J Plant Res 131(1):99–110

    Article  CAS  Google Scholar 

  • Dabin B (1967) Application des dosages automatiques a l’Analyse des sols. Cah O R S T O M Pédol 3:257–286

    Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth JS, Shurigin VV, Hashem A, Abd_Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under Salt Stress. Front Microbiol 8:1887

    Article  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  CAS  Google Scholar 

  • Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2011) Characterisation of a copper-resistant symiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709

    Article  CAS  Google Scholar 

  • Ghnaya T, Mnassri M, Ghabriche R, Wali M, Poschenrieder C, Lutts S, Abdelly C (2016) Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. Front Plant Sci 6:863

    Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Inter J Adv Res 2:1043–1055

    Google Scholar 

  • Górska-Czekaj M, Borucki W (2013) A correlative study of hydrogen peroxide accumulation after mercury or copper treatment observed in root nodules of Medicago truncatula under light, confocal and electron microscopy. Micron 52–53:24–32

    Article  Google Scholar 

  • Guefrachi I, Rejili M, Mahdhi M, Mars M (2013) Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadium stress for soil phytoremediation. Int J Phytoremediation 15:938–951

    Article  CAS  Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediation 16:179–202

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within Plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  Google Scholar 

  • Hemme CL, Green SJ, Rishishwar L, Prakash O, Pettenato A, Chakraborty R, Deutschbauer AM, Van Nostrand JD, Wu L, He Z, Jordan IK, Hazen TC, Arkin AP, Kostka JE, Zhou J (2016) Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community. mBio. https://doi.org/10.1128/mBio.02234-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hynninen A, Touzé T, Pitkänen L, Lecreulx DL, Virta M (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74:384–394

    Article  CAS  Google Scholar 

  • Idriss R, Trivonova R, Puschenreiter M, Monchy S, Wenzel WW, Sessitch A (2004) Baterial communities associated with flowering plants of the Ni-hyperacumulator Thlaspi geosingense. Appl Environ Mirobiol 70:2667–2677

    Article  Google Scholar 

  • Jebara M, Mhamdi R, Aouani ME, Ghrir R, Mars M (2001) Genetic diversity of Sinorhizobium populations recovered from different Medicago varieties cultivated in Tunisian soils. Can J Microbiol 47:139–147

    Article  CAS  Google Scholar 

  • Jebara HS, Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Jebara M (2015a) Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Environ Sci Pollut Res 22:2537–2545

    Article  CAS  Google Scholar 

  • Jebara HS, Abdelkerim S, Challougui Fatnassi I, Chiboub M, Saadani O, Jebara M (2015b) Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils. J Basic Microbiol 55:346–353

    Article  CAS  Google Scholar 

  • Jebara SH, Fatnassi IC, Abdelkrim SA, Saadani O, Chiboub M, Abid G, Jebara M (2017) Potentialities and limit of legume-plant growth promoting bacteria symbioses use in phytoremediation of heavy metal contaminated soils. Int J Plant Biol Res 5:1077

    Google Scholar 

  • Kalra YP, Maynard DG (1991) Methods manual for forest soil and plant analysis, forestry Canada, northwest region, northern forestry centre, Edmonton, Alberta. Information Report NOR-X-319E

  • Kamran MA, Eqani SAMAS, Bibi S, Xu RK, Monis MFH, Katsoyiannis A, Bokhari H, Chaudhary HJ (2016) Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicol Environ Saf 126:256–263

    Article  CAS  Google Scholar 

  • Karimi A, Khodaverdiloo H, Sadaghiani MHR (2017) Fungi and bacteria as helping agents for remediation of a Pb- contaminated soil by Onopordum acanthium. Casp J Environ Sci 15:249–262

    Google Scholar 

  • Kjeldahl J (1883) A new method for the determination of nitrogen in organic matter. Zeitschrift Anal Chem 22:366–382

    Article  Google Scholar 

  • Kochare T, Tamir B (2015) Assessment of dairy feeds for heavy metals. Am Sci Res J Eng Technol sci 11:20–31

    Google Scholar 

  • Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017) Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8:141

    Article  Google Scholar 

  • Luo SL, Chen L, Chen JL, Xiao X, Xu TY, Wan Y, Rao C, Liu CB, Liu YT, Lai C, Zeng GM (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    Article  CAS  Google Scholar 

  • Martinez RJ, Wang Y, Raimondo MA, Coombs JM, Barkay T, Sobecky PA (2006) Horizontal gene transfer of PIB-Type ATPases among bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Appl Environ Microbiol 72:3111–3118

    Article  CAS  Google Scholar 

  • Maynaud G, Brunel B, Yashiro E, Mergeay M, Cleyet-Marel JC, Le Quéré A (2014) CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)- type ATPase involved in cadmium and zinc resistance. Res Microbiol 165:175–189

    Article  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in Plants: The omics strategies. Front Plant Sci 8:172

    Article  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  Google Scholar 

  • Mountier NS, Griggs JL, Oomen GAC (1966) Sources of error in advisory soil tests. New Zeal J Agric Res 9:328–338

    Article  Google Scholar 

  • Nagati VB, Koyyati R, Marx P, Chinnapaka VD, Padigya PRM (2015) Effect of heavy metals on seed germination and plant growth on Grass pea plant (Lathyrus sativus). Int J Pharm Tech Res 7:528–534

    CAS  Google Scholar 

  • Ndeddy Aka RJ, Babalola OO (2016) Effect of bacterial inoculation of strains of pseudomonas aeruginosa. alcaligenes feacalis and bacillus subtilis on germination, growth and heavy metal (cd, cr, and ni) uptake of Brassica juncea. Int J Phytoremed 18:200–209

    Article  CAS  Google Scholar 

  • Nematian MA, Kazemeini F (2013) Accumulation of Pb, Zn, Cu and Fe in plants and hyperaccumulator choice in Galali iron mine area, Iran. Int J Agric Crop Sci 5:426–432

    Google Scholar 

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA Circular Nr 939. US Gov Print Office, Washington, DC

    Google Scholar 

  • Ortiz-Castro R, Valencia-Cantero E, Lopez-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  Google Scholar 

  • Osorio-Vega NW (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nal Agric Medellín 60:3621–3643

    Google Scholar 

  • Papoyan A, Piñeros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

    Article  CAS  Google Scholar 

  • Rajendran G, Patel MH, Joshi SJ (2012) isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol. https://doi.org/10.1155/2012/693982

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH (2016) In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicol Environ Saf 130:263–269

    Article  CAS  Google Scholar 

  • Saihua L, Yetao T, Rongliang Q, Rongrong R, Ruiguang G, Xionghui J (2016) Responses of carbonic anhydrase to cadmium in the Zinc/Cadmium hyperaccumulator Picris divaricata Vant. Pedosphere 26:709–716

    Article  Google Scholar 

  • Sbabou L, Idir Y, Bruneel O, Le Quéré A, Aurag J (2016) Characterization of root-nodule bacteria isolated from Hedysarum spinosissimum L, growing in mining sites of northeastern region of Morocco. SOJ Microbiol Infect Dis: 4:1–8

    Article  Google Scholar 

  • Schwartz AR, Ortiz I, Maymon M, Herbold C, Fujishige NA, Vijanderan JA, Villella W, Hanamoto K, Diener A, Sanders ER, DeMason DA, Hirsch AM (2013) Bacillus simplex—a little Known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. Viciae Agronomy 3:595–620

    Article  Google Scholar 

  • Silva MLS, Vitti GC, Trevizam AR (2014) Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil. Rev Ceres 61:248–254

    Article  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1985) Methods in legume Rhizobium technology. University of Hawaii, NifTAL Project and MIRCEN, Paia

    Google Scholar 

  • Talat R, Pratap Rudra PMP (2013) Effects of lead on Lathyrus sativus seeds. Adv Appl Sci Res 4:334–342

    CAS  Google Scholar 

  • Talukdar D (2011) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plants Res 5:3619–3628

    CAS  Google Scholar 

  • Talukdar D (2014) Increasing nuclear ploidy enhances the capability of antioxidant defense and reduces chromotoxicity in Lathyrus sativus roots under cadmium stress. Turk J Bot 38:696–712

    Article  CAS  Google Scholar 

  • Terefework SN, Suomalainen L, Paulin K (1998) Lindstrom phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 48:349–356

    Article  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Vadez V, Rodier F, Payre H, Drevon JJ (1996) Nodule permeability to O2 and nitrogenase-linked respiration in bean genotypes varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 34:871–878

    CAS  Google Scholar 

  • Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Article  Google Scholar 

  • Vincent JM (1970) A manual for practical study of root nodule bacteria. Blakwell Scientific Publications, Oxford

    Google Scholar 

  • Wali M, Ben Rjab K, Gunsé B, Lakdhar A, Lutts S, Poschenrieder C, Abdelly C, Ghnaya T (2014) How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere 117:243–250

    Article  Google Scholar 

  • Wang F, Li G, Guo J, Chen S (2016) Effects of arbuscular mycorrhizal fungi inoculation on a wild type sorrel (Rumex acetosa) under Copper Stress. IJESD 7:9

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    Article  CAS  Google Scholar 

  • Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33- 2 isolated from root nodule of Lespedeza cuneata in old mine tailings in China. J Hazard Mater 162:50–56

    Article  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Ben Rejeb K, Lakhdar A, Rejeb S, Jemal F (2010) Effects of EDTA on phytoetraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Biores Technol 101:3978–3983

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang H, Li X, Su Z, Zhang C (2008) The cadA gene in cadmium-resistant bacteria from cadmium-polluted soil in the Zhangshi area of northeast China. Curr Microbiol 56:236–239

    Article  CAS  Google Scholar 

  • Zhang Q, Achal V, Xiang WN, Wang D (2014) Identification of heavy metal resistant bacteria isolated from yangtze River, China. Int J Agric Biol 1:619–623

    Google Scholar 

  • Zribi K, Djebali N, Mrabet M, Khayat N (2012) Physiological responses to cadmium, copper, lead and zinc of Sinorhizobium sp strains modulating Medicago sativa in Tunisian mining soils. Ann Microbiol 62:1181–1188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Yordan Muhovski, PhD (Walloon Agricultural Research Centre CRA-W Department of Life Sciences. Gembloux, Belgium) for English edition; the Laboratory of Legumes, Biotechnology Center of Borj-Cedria (CBBC) and the Tunisian Ministry of Higher Education and Scientific Research for securing the funding of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Jebara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkrim, S., Jebara, S.H., Saadani, O. et al. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Arch Microbiol 201, 107–121 (2019). https://doi.org/10.1007/s00203-018-1581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1581-4

Keywords

Navigation