Skip to main content
Log in

Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The ethanol-producing bacterium Zymomonas mobilis is of great interest from a bioenergetic perspective because, although it has a very high respiratory capacity, the respiratory system does not appear to be primarily required for energy conservation. To investigate the regulation of respiratory genes and function of electron transport branches in Z. mobilis, several mutants of the common wild-type strain Zm6 (ATCC 29191) were constructed and analyzed. Mutant strains with a chloramphenicol-resistance determinant inserted in the genes encoding the cytochrome b subunit of the bc 1 complex (Zm6-cytB), subunit II of the cytochrome bd terminal oxidase (Zm6-cydB), and in the catalase gene (Zm6-kat) were constructed. The cytB and cydB mutants had low respiration capacity when cultivated anaerobically. Zm6-cydB lacked the cytochrome d absorbance at 630 nm, while Zm6-cytB had very low spectral signals of all cytochromes and low catalase activity. However, under aerobic growth conditions, the respiration capacity of the mutant cells was comparable to that of the parent strain. The catalase mutation did not affect aerobic growth, but rendered cells sensitive to hydrogen peroxide. Cytochrome c peroxidase activity could not be detected. An upregulation of several thiol-dependent oxidative stress-protective systems was observed in an aerobically growing ndh mutant deficient in type II NADH dehydrogenase (Zm6-ndh). It is concluded that the electron transport chain in Z. mobilis contains at least two electron pathways to oxygen and that one of its functions might be to prevent endogenous oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atack JM, Kelly DJ (2006) Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Adv Microb Physiol 52:73–106

    Article  Google Scholar 

  • Belaich JP, Senez JC (1965) Influence of aeration and pantothenate on growth yields of Zymomonas mobilis. J Bacteriol 89:1195–1200

    CAS  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Glutathione reductase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 1. Academic Press, New York, pp 465–466

    Google Scholar 

  • Bringer S, Finn RK, Sahm H (1984) Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139:376–381

    Article  CAS  Google Scholar 

  • Charoensuk K, Irie A, Lertwattanasakul N, Sootsuwan K, Thanonkeo P, Yamada M (2011) Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis. J Mol Microbiol Biotechnol 20:70–82

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove K, Coutts G, Jonsson I-M, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ (2007) Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistance, and nasal colonization in Staphylococcus aureus. J Bacteriol 189:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Echave P, Tamarit J, Cabiscol E, Ros J (2003) Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem 278:30193–30198

    Article  PubMed  CAS  Google Scholar 

  • Ellfolk N, Soininen R (1970) Pseudomonas cytochrome c peroxidase. Acta Chem Scand 24:2126–2136

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1994) Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J Bacteriol 176:2293–2299

    PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Demple B (1995) Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. J Biol Chem 270:13681–13687

    Article  PubMed  CAS  Google Scholar 

  • Goodhew CF, Wilson IBH, Hunter DJB, Pettigrew GW (1990) The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J 271:707–712

    PubMed  CAS  Google Scholar 

  • Kalnenieks U (2006) Physiology of Zymomonas mobilis: some unanswered questions. Adv Microb Physiol 51:73–117

    Article  PubMed  CAS  Google Scholar 

  • Kalnenieks U, de Graaf AA, Bringer-Meyer S, Sahm H (1993) Oxidative phosphorylation in Zymomonas mobilis. Arch Microbiol 160:74–79

    CAS  Google Scholar 

  • Kalnenieks U, Galinina N, Bringer-Meyer S, Poole RK (1998) Membrane D-lactate oxidase in Zymomonas mobilis: evidence for a branched respiratory chain. FEMS Microbiol Lett 168:91–97

    PubMed  CAS  Google Scholar 

  • Kalnenieks U, Galinina N, Toma MM, Poole RK (2000) Cyanide inhibits respiration yet stimulates aerobic growth of Zymomonas mobilis. Microbiology 146:1259–1266

    PubMed  CAS  Google Scholar 

  • Kalnenieks U, Galinina N, Toma MM (2005) Physiological regulation of the properties of alcohol dehydrogenase II (ADH II) of Zymomonas mobilis: NADH renders ADH II resistant to cyanide and aeration. Arch Microbiol 183:450–455

    Article  PubMed  CAS  Google Scholar 

  • Kalnenieks U, Galinina N, Toma MM, Pickford JL, Rutkis R, Poole RK (2006) Respiratory behaviour of a Zymomonas mobilis adhB:kanr mutant supports the hypothesis of two alcohol dehydrogenase isoenzymes catalysing opposite reactions. FEBS Lett 580:5084–5088

    Article  PubMed  CAS  Google Scholar 

  • Kalnenieks U, Galinina N, Strazdina I, Kravale Z, Pickford JL, Rutkis R, Poole RK (2008) NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis. Microbiology 154:989–994

    Article  PubMed  CAS  Google Scholar 

  • Kelly MJ, Poole RK, Yates MG, Kennedy C (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019

    PubMed  CAS  Google Scholar 

  • Korshunov S, Imlay JA (2010) Two sources of endogenous hydrogen peroxide in Escherichia coli. Mol Microbiol 75:1389–1401

    Article  PubMed  CAS  Google Scholar 

  • Kouvelis VN, Saunders E, Brettin TS, Bruce D, Detter C, Han C, Typas MA, Pappas KM (2009) Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J Bacteriol 191:7140–7141

    Article  PubMed  CAS  Google Scholar 

  • Liang C–C, Lee W-C (1998) Characteristics and transformation of Zymomonas mobilis with plasmid pKT230 by electroporation. Bioprocess Eng 19:81–85

    CAS  Google Scholar 

  • Markwell MAK, Haas SM, Bieber LL, Talbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  • Osman YA, Conway T, Bonetti SJ, Ingram LO (1987) Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation. J Bacteriol 169:3726–3736

    PubMed  CAS  Google Scholar 

  • Panek HR, O’Brian MR (2004) KatG is the primary detoxifier of hydrogen peroxide produced by aerobic metabolism in Bradyrhizobium japonicum. J Bacteriol 186:7874–7880

    Article  PubMed  CAS  Google Scholar 

  • Poole RK, Cook GM (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224

    Article  PubMed  CAS  Google Scholar 

  • Reyes L, Scopes RK (1991) Membrane-associated ATPase from Zymomonas mobilis; purification and characterization. BBA 1068:174–178

    Article  PubMed  CAS  Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84

    Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615

    Google Scholar 

  • Seaver LC, Imlay JA (2001) Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol 183:7182–7189

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH et al (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68

    Article  PubMed  CAS  Google Scholar 

  • Sootsuwan K, Lertwattanasakul N, Thanonkeo P, Matsushita K, Yamada M (2008) Analysis of the respiratory chain in ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. J Mol Microbiol Biotechnol 14:163–175

    Article  PubMed  CAS  Google Scholar 

  • Sprenger G (1996) Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett 145:301–307

    Article  CAS  Google Scholar 

  • Strohdeicher M, Neuß B, Bringer-Meyer S, Sahm H (1990) Electron transport chain of Zymomonas mobilis. Interaction with the membrane-bound glucose dehydrogenase and identification of ubiquinone 10. Arch Microbiol 154:536–543

    Article  CAS  Google Scholar 

  • Swings J, DeLey J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    PubMed  CAS  Google Scholar 

  • Trumpower BL, Gennis RB (1994) Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem 63:675–716

    Article  PubMed  CAS  Google Scholar 

  • Viikari L (1986) By-product formation in ethanol fermentation by Zymomonas mobilis. Technical Research Centre of Finland. Publication 27

  • Viikari L, Berry DR (1988) Carbohydrate metabolism in Zymomonas. Crit Rev Biotechnol 7:237–261

    Article  CAS  Google Scholar 

  • Yang S, Pappas KM, Hauser LJ, Land ML, Chen G-L, Hurst GB, Pan C, Kouvelis VN, Typas MA, Pelletier DA, Klingeman DL, Chang YJ, Samatova NF, Brown SD (2009a) Improved genome annotation for Zymomonas mobilis. Nat Biotechnol 27:893–894

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD (2009b) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10:34

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grant 09.1306 of Latvian Council of Science, The Royal Society Travel Grant TG 102318 (for UK), and by Latvian ESF project 2009/0207/1DP/1.1.1.2.0/09/APIA/VIAA/128.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uldis Kalnenieks.

Additional information

Communicated by Gregory Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strazdina, I., Kravale, Z., Galinina, N. et al. Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants. Arch Microbiol 194, 461–471 (2012). https://doi.org/10.1007/s00203-011-0785-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0785-7

Keywords

Navigation