Skip to main content
Log in

Electron transport chain of Zymomonas mobilis

Interaction with the membrane-bound glucose dehydrogenase and identification of ubiquinone 10

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The interaction of the membrane-bound glucose dehydrogenase from the anaerobic but aerotolerant bacterium Zymomonas mobilis with components of the electron transport chain has been studied. Cytoplasmic membranes showed reduction of oxygen to water with the substrates glucose or NADH. The effects of the respiratory chain inhibitors piericidin, capsaicin, rotenone, antimycin, myxothiazol, HQNO, and stigmatellin on the oxygen comsumption rates in the presence of NADH or glucose as substrates indicated that a complete and in the most parts identical respiratory chain is participating in the glucose as well as in the NADH oxidation. Furthermore, the presence of coenzyme Q10 (ubiquinone 10) in Z. mobilis was demonstrated. Extraction from and reincorporation of the quinone into the membranes revealed that ubiquinone is essential for the respiratory activity with glucose and NADH. In addition, a membrane-associated tetramethyl-p-phenylene-diamine-oxidase activity could be detected in Z. mobilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-di-[3-ethyl-benzthiazolinesulfonate (6)]

GDH:

glucose dehydrogenase

HQNO:

2-heptyl-4-hydroxy-quinoline-N-oxide

PQQ:

pyrroloquinoline quinone

TMPD:

N,N,N′,N′-tetramethyl-p-phenylene-diamine

References

  • Ameyama M, Matsushita K, Shinagawa E, Adachi O(1987) Sugar-oxidizing respiratory chain of Gluconobacter suboxydans. Evidence for a branched respiratory chain and characterization of respiratory chain-linked cytochromes. Agric Biol Chem 51:2943–2950

    Google Scholar 

  • Beardmore-Gray M, Anthony C (1986) The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain. J Gen Microbiol 132:1257–1268

    Google Scholar 

  • Belaich JP, Senez JC (1965) Influence of aeration and of pantothenate on growth yields of Zymomonas mobilis. J Bacteriol 89:1195–1200

    Google Scholar 

  • Bergmeyer HU, Graßl M, Walter HE (1983a) Catalase. In: Bergmeyer HU, Bergmeyer J, Graßl M (eds) Methods of enzymatic analysis, vol 2, 3rd edn. Verlag Chemie, Weinheim, pp 165–166

    Google Scholar 

  • Bergmeyer HU, Graßl M, Walter HE (1983b) Alcohol oxidase. In: Bergmeyer HU, Bergmeyer J, Graßl M (eds) Methods of enzymatic analysis, vol 2, 3rd edn. Verlag Chemie, Weinheim, pp 143–144

    Google Scholar 

  • Bouvet OMM, Grimont PAD (1988) Extracellular oxidation of d-glucose by some members of the enterobacteriaceae. Ann Inst Pasteur/Microbiol 139:59–77

    Google Scholar 

  • Bringer S, Finn RK, Sahm H (1984) Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139:376–381

    Google Scholar 

  • Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140:312–316

    Google Scholar 

  • Collins MD (1985) Analysis of isoprenoid quinones. Methods Microbiol 18:329–366

    Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    Google Scholar 

  • Dawes EA, Ribbons DW, Large PJ (1966) The route of ethanol formation in Zymomonas mobilis. Biochem J 98:795–803

    Google Scholar 

  • Duine JA, Jongejan JA (1989) Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor. Annu Rev Biochem 58:403–426

    Google Scholar 

  • Ensley BD, Finnerty WR (1980) Influences of growth substrates and oxygen on the electron transport chain system in Acinetobacter sp. HO1-N. J Bacteriol 142:859–868

    Google Scholar 

  • Ernster L, Glaser E, Norling B (1978) Extraction and reincorporation of ubiquinone in submitochondrial particles. Methods Enzymol 53:573–579

    Google Scholar 

  • Friedrich T, Strohdeicher M, Hofhaus G, Preis D, Sahm H, Weiss H (1990) The same domain motif for ubiquinone reduction in mitochondrial or chloroplast NADH dehydrogenase and bacterial glucose dehydrogenase. FEBS Lett 265:37–40

    Google Scholar 

  • Jagow Gvon, Link TA (1986) Use of specific inhibitors on the mitochondrial bc 1 complex. Methods Enzymol 126:253–271

    Google Scholar 

  • Jeng M, Hall C, Crane Fl, Takahashi N, Tamura S, Folkers K (1968) Inhibition of mitochondrial electron transport by piericidin A and related compounds. Biochemistry 7:1311–1321

    Google Scholar 

  • Leigh D, Scopes RK, Rogers PL (1984) A proposed pathway for sorbitol production by Zymomonas mobilis. Appl Microbiol Biotechnol 20:413–415

    Google Scholar 

  • Matsushita K, Ohno Y, Shinagawa E, Adachi O, Ameyama M (1982) Membrane-bound, electron transport-linked, d-glucose dehydrogenase of Pseudomonas fluorescens. Interaction of the purified enzyme with ubiquinone or phospholipid. Agric Biol Chem 46:1007–1011

    Google Scholar 

  • Matsushita K, Nonobe M, Shinagawa E, Adachi O, Ameyama M (1987a) Reconstitution of pyrroloquinoline quinone-dependent d-glucose oxidase respiratory chain of Escherichia coli with cytochrome o oxidase. J Bacteriol 169:205–209

    Google Scholar 

  • Matsushita K, Ohnishi T, Kaback HR (1987b) NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26:7732–7737

    Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1988) Quinoprotein d-glucose dehydrogenase in Acinetobacter calcoaceticus LMD 79.41: the membrane-bound enzyme is distinct from the soluble enzyme. FEMS Microbiol Lett 55:53–58

    Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989a) Quinoprotein d-glucose dehydrogenase of the Acinetobacter calcoaceticus respiratory chain: membrane-bound and soluble forms are different molecular species. Biochemistry 28:6276–6280

    Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989b) Reactivity with ubiquinone of quinoprotein glucose dehydrogenase from Gluconobacter suboxydans. J Biochem 105:633–637

    Google Scholar 

  • McGill DJ, Dawes EA (1971) Glucose and fructose metabolism in Zymomonas anaerobia. Biochem J 125:1059–1068

    Google Scholar 

  • Möllering H, Bergmeyer HU (1974) Gluconat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol. 2. Verlag Chemie, Weinheim, pp 1288–1292

    Google Scholar 

  • Müller RH, Babel W (1986) Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus. Arch Microbiol 144:62–66

    Google Scholar 

  • Pankova LM, Shvinka JE, Beker ME, Slava ÉÉ (1985) Effect of aeration on Zymomonas mobilis. Mikrobiologiya 54:120–124

    Google Scholar 

  • Prochaska HJ (1988) Purification and crystallization of rat liver NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue affinity chromatography: identification of a new potent inhibitor. Arch Biochem Biophys 267:529–538

    Google Scholar 

  • Shimomura Y, Kawada T, Suzuki M (1989) Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch Biochem Biophys 270:573–577

    Google Scholar 

  • Shvinka JE, Pankova LM, Mezbarde IN, Licis LJ (1989) Hydrogen peroxide production by Zymomonas mobilis. Appl Microbiol Biotechnol 31:240–245

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Google Scholar 

  • Strohdeicher M, Schmitz B, Bringer-Meyer S, Sahm H (1988) Formation and degradation of gluconate by Zymomonas mobilis. Appl Microbiol Biotechnol 27:378–382

    Google Scholar 

  • Strohdeicher M, Bringer-Meyer S, Neuß B, van derMeer R, Duine JA, Sahm H (1989) Glucose dehydrogenase from Zymomonas mobilis: evidence for a quinoprotein. In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins. Kluwer, Dordrecht, pp 103–105

    Google Scholar 

  • Swings J, DeLey J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    Google Scholar 

  • Truesdale GA, Downing AL, Lowden GF (1955) The solubility of oxygen in pure water and sea-water. J Appl Chem 5:53–62

    Google Scholar 

  • vanSchie BJ, Hellingwerf KJ, vanDijken JP, Elferink MGL, vanDijl JM, Kuenen JG, Konings WN (1985) Energy transduction by electron transfer via pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. wolffi). J Bacteriol 163:493–499

    Google Scholar 

  • Yamada Y, Aida K, Uemura T (1968) Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of genera Gluconobacter and Acetobacter, especially of so-called intermediate strains. Agric Biol Chem 32:786–788

    Google Scholar 

  • Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohdeicher, M., Neuß, B., Bringer-Meyer, S. et al. Electron transport chain of Zymomonas mobilis . Arch. Microbiol. 154, 536–543 (1990). https://doi.org/10.1007/BF00248833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248833

Key words

Navigation