Skip to main content
Log in

Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 23 November 2011

Abstract

A coastal Roseobacter strain of marine aerobic anoxygenic phototrophic bacteria (AAnPB) was isolated and phylogenetically determined. The strain OBYS 0001 was characterized by its physiological and biochemical properties with reference to the Erythrobacter longus type strain NBRC 14126. When grown in batch cultures, the growth curves of the both strains were similar. Cellular bacteriochlorophyll a concentrations of the strains reached the maxima in the stationary growth conditions. In vivo fluorescence excitation/optical density spectra between 470 and 600 nm for OBYS 0001 represented higher values than NBRC 14126. Variable fluorescence measurements revealed that the functional absorption cross section (σ) of the bacterial photosynthetic complexes for OBYS 0001 was significantly higher than that for NBRC 14126 under green excitation. These results suggest that Roseobacter can capture green light more efficiently than Erythrobacter for photosynthesis. The photochemical quantum efficiencies (F v/F m) of the bacterial photosynthetic complexes for OBYS 0001 were consistently lower than those for NBRC 14126. A relationship between the growth rate and F v/F m was significant for OBYS 0001, but that was not found for NBRC 14126. These results suggested that F v/F m for AAnPB could not be used as a proxy of the growth rate which is consistent with their mostly heterotrophic characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Béjà O, Suzuki MT (2008) Photoheterotrophic marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the ocean. Wiley, pp 131–158

    Google Scholar 

  • Boyd PW, Strzepek R, Takeda S, Jackson G, Wong CS, McKay RM, Law C, Kiyosawa H, Saito H, Sherry N, Keith J, Gower J, Ramaiah N (2005) The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific. Limnol Oceanogr 50:1872–1886

    Article  CAS  Google Scholar 

  • Buchan A, Gonzalez JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677

    Article  PubMed  CAS  Google Scholar 

  • Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnol Oceanogr 38:1321–1327

    Article  CAS  Google Scholar 

  • Cottrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bright and the North Pacific Gyre. Appl Environ Microbiol 72:557–564

    Article  PubMed  CAS  Google Scholar 

  • Herbst LH, Costa SF, Weiss LM, Johnson LK, Bartell J, Davis R, Walsh M, Levi M (2001) Granulomatous skin lesions in moray eels caused by a novel Mycobacterium species related to Mycobacterium triplex. Infect Immun 69:4639–4646

    Article  PubMed  CAS  Google Scholar 

  • Jiao N, Zang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria on the sea. Environ Microbiol 9:3091–3099

    Article  PubMed  CAS  Google Scholar 

  • Kishino M, Takahashi M, Okami N, Ichimura S (1985) Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull Mar Sci 37:634–642

    Google Scholar 

  • Koblížek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338

    Article  PubMed  Google Scholar 

  • Koblížek M, Shih JD, Breirbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of phototrophic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochemi Biophys Acta 1706:220–231

    Article  Google Scholar 

  • Koblížek M, Mlčoušková J, Kolber Z, Kopecký J (2010) On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192:41–49

    Article  PubMed  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P (1988) Effect of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiol 88:923–929

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblížek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  PubMed  CAS  Google Scholar 

  • Kopf U, Heinze J (1984) 2,7-Bis (diethylamino) phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm. Anal Chem 56:1931–1935

    Article  CAS  Google Scholar 

  • Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Kirchman DL, Lebaron P (2007) High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73:4198–4205

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 15:87–88

    Google Scholar 

  • Noguchi T, Hayashi H, Shimada K, Takaichi S, Tasumi M (1992) In vivo states and functions of carotenoids in an aerobic photosynthetic bacterium, Erythrobacter longus. Photosynth Res 31:21–30

    Article  CAS  Google Scholar 

  • Parkhill J-P, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Article  Google Scholar 

  • Parvin S, Nishino N (2009) Bacterial community associated with ensilage process of wilted guinea grass. J Appl Microbiol 107:2029–2036

    Article  PubMed  CAS  Google Scholar 

  • Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, Hager-Braun C, Neerken S, Miller M, Amesz J (2000) Composition and optical properties of reaction centre core complexes from green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth Res 64:27–39

    Article  PubMed  CAS  Google Scholar 

  • Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: a new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128

    Article  CAS  Google Scholar 

  • Schwalbach MS, Furhman JA (2005) Wide ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr 50:620–628

    Article  CAS  Google Scholar 

  • Shiba T, Harashima K (1986) Aerobic phototrophic bacteria. Molecul Microbiol 3:376–378

    CAS  Google Scholar 

  • Shiba T, Shimidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45

    PubMed  CAS  Google Scholar 

  • Shibata A, Goto Y, Saito H, Kikuchi T, Toda T, Taguchi S (2006) Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat Microb Ecol 43:223–231

    Article  Google Scholar 

  • Shimada K, Hayashi H, Tasumi M (1985) Bacteriochlorophyll-protein complexes of aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. Arch Microbiol 143:244–247

    Article  CAS  Google Scholar 

  • Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP, Hanada S (2002) Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol 68:1665–1673

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Liu H, Saino T, Obata H, Takano M, Okamura K, Sohrin Y, Fujishima Y (2002) East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47:1581–1594

    Article  CAS  Google Scholar 

  • Takaichi S, Shimada K, Ishidsu J-I (1988) Monocyclic cross-conjugated carotenal from an aerobic photosynthetic bacterium Eryhtrobacter longus. Photochemistry 27:3605–3609

    Article  CAS  Google Scholar 

  • Takaichi S, Shimada K, Ishidsu J-I (1990) Carotenoid from the aerobic photosynthetic bacterium Erythrobacter longus: β-caroteme and its hydroxyl derivates. Arch Microbiol 153:118–122

    Article  CAS  Google Scholar 

  • Takaichi S, Furuhata K, Ishidsu J-I, Shimada K (1991) Carotenoid sulphates from the aerobic photosynthetic bacterium Erythrobacter longus. Photochemistry 30:3411–3415

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tang K, Zong R, Zhang F, Xiao N, Jiao N (2010) Characterization of the photosynthetic apparatus and proteome of Roseobacter denitrificans. Curr Microbiol 60:124–133

    Article  PubMed  CAS  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  • Wagner-Dobler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Ann Rev Microbiol 60:255–280

    Article  Google Scholar 

  • Wyman M (1992) An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria (Synechococcus spp.). Limnol Oceanogr 37:1300–1306

    Article  CAS  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    PubMed  CAS  Google Scholar 

  • Yurkov V, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter N, Daldul F, Thurnaner MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Medio B. V, Berlin, pp 31–55

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Drs. Yuya Tada, Akito Taniguchi, Hideki Fukuda, Kazuhiro Kogure, Katsumi Matsuura, Atsushi Tsuda, Tsuneo Shiba, and the members of the International Coastal Research Center (Univ. Tokyo) for technical support and helpful advice. This study was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (#19030006 and #18067008) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sato-Takabe.

Additional information

Communicated by Joerg Overmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato-Takabe, Y., Hamasaki, K. & Suzuki, K. Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains. Arch Microbiol 194, 331–341 (2012). https://doi.org/10.1007/s00203-011-0761-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0761-2

Keywords

Navigation