Skip to main content
Log in

Characterization of the Photosynthetic Apparatus and Proteome of Roseobacter denitrificans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The phototrophic capacity of aerobic anoxygenic phototrophic bacteria endows them with a selective advantage over other heterotrophic bacteria in the oligotrophic ocean. Here, we reported the phototrophic features and proteome of an aerobic phototrophic bacterium Roseobacter denitrificans under starvation stress. The fluorescence induction and relaxation measurements suggested that the photosynthetic capacity in R. denitrificans was preserved but was lower than in the photoautotrophic bacterium Rhodobacter sphaeroides. The existence of light-harvesting complexes (LH1 and LH2) and the reaction center (RC) in the native membrane were demonstrated through atomic force microscopy image analysis as direct evidence of their phototrophy. The homology-based LH1–RC complex structure was proposed in which RC was the Rb. sphaeroides homolog structure surrounded by the LH1. Moreover, the protein expression profiles of cells in the stationary phase under heterotrophic and mixotrophic conditions show that light enhanced or activated some proteins such as carbon monoxide dehydrogenase and NifU to cope with the low levels of amino acids and carbon sources under starvation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allgaier M, Uphoff H, Felske A et al (2003) Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059

    Article  CAS  PubMed  Google Scholar 

  2. Bahatyrova S, Frese RN, Siebert CA et al (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062

    Article  CAS  PubMed  Google Scholar 

  3. Beja O, Suzuki MT, Heidelberg JF et al (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    Article  CAS  PubMed  Google Scholar 

  4. Chang CH, El-Kabbani O, Tiede D et al (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30:5352–5360

    Article  CAS  PubMed  Google Scholar 

  5. Conroy MJ, Westerhuis WH, Parkes-Loach PS et al (2000) The solution structure of Rhodobacter sphaeroides LH1 beta reveals two helical domains separated by a more flexible region: structural consequences for the LH1 complex. J Mol Biol 298:83–94

    Article  CAS  PubMed  Google Scholar 

  6. Eswar ND, Eramian B, Webb Shen MY et al (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426:145–159

    Article  CAS  PubMed  Google Scholar 

  7. Gade D, Gobom J, Rabus R (2005) Proteomic analysis of carbohydrate catabolism and regulation in the marine bacterium Rhodopirellula baltica. Proteomics 5:3672–3683

    Article  CAS  PubMed  Google Scholar 

  8. Hu YH, Du HL, Jiao NZ et al (2006) Abundant presence of the γ-like Proteobacterial pufM gene in oxic seawater. FEMS Microbiol Lett 263:200–206

    Article  CAS  PubMed  Google Scholar 

  9. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  10. Jiao NZ, Zhang Y, Zeng YH et al (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099

    Article  CAS  PubMed  Google Scholar 

  11. Koblizek M, Masin M, Ras J et al (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9:2401–2406

    Article  CAS  PubMed  Google Scholar 

  12. Koblizek M, Shih JD, Breitbart SI et al (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231

    Article  CAS  PubMed  Google Scholar 

  13. Kolber ZS, Plumley FG, Lang AS et al (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  14. Kolber ZS, Prasil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106

    Article  CAS  PubMed  Google Scholar 

  15. Konorty M, Kahana N, Linaroudis A et al (2008) Structural analysis of photosynthetic membranes by cryo-electron tomography of intact Rhodopseudomonas viridis cells. J Struct Biol 161:393–400

    Article  CAS  PubMed  Google Scholar 

  16. Kortlüke C, Breese K, Gad’on N et al (1997) Structure of the puf operon of the obligately aerobic, bacteriochlorophyll alpha-containing bacterium Roseobacter denitrificans OCh114 and its expression in a Rhodobacter capsulatus puf puc deletion mutant. J Bacteriol 179:5247–5258

    PubMed  Google Scholar 

  17. Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  PubMed  Google Scholar 

  18. Li Q, Jiao NZ, Peng ZQ (2006) Environmental control of growth and BChl a expression in an aerobic anoxygenic phototrophic bacterium Erythrobacter longus (DSMZ6997). Acta Oceanol Sin 25:138–144

    CAS  Google Scholar 

  19. Nishimura K, Shimada H, Shinmen T et al (1999) Photosynthetic regulatory gene cluster in an aerobic photosynthetic bacterium Roseobacter denitrificans. J Gen Appl Microbiol 45:129–134

    Article  CAS  PubMed  Google Scholar 

  20. Olsen JD, Tucker JD, Timney JA et al (2008) The organization of LH2 complexes in membranes from Rhodobacter sphaeroides. J Biol Chem 283:30772–30779

    Article  CAS  PubMed  Google Scholar 

  21. Pasternak C, Haberzettl K, Klug G (1999) Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides. J Bacteriol 181:100–106

    CAS  PubMed  Google Scholar 

  22. Roszak AW, Howard TD, Southall J et al (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Article  CAS  PubMed  Google Scholar 

  23. Scheuring S (2006) AFM studies of the supramolecular assembly of bacterial photosynthetic core-complexes. Curr Opin Chem Biol 10:387–393

    Article  CAS  PubMed  Google Scholar 

  24. Scheuring S, Goncalves RP, Prima V et al (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358:83–96

    Article  CAS  PubMed  Google Scholar 

  25. Scheuring S, Levy D, Rigaud JL (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 1712:109–127

    Article  CAS  PubMed  Google Scholar 

  26. Scheuring S, Rigaud JL, Sturgis JN (2004) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23:4127–4133

    Article  CAS  PubMed  Google Scholar 

  27. Scheuring S, Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309:484–487

    Article  CAS  PubMed  Google Scholar 

  28. Schwarze C, Carluccio AV, Venturoli G et al (2000) Photo-induced cyclic electron transfer involving cytochrome bc1 complex and reaction center in the obligate aerobic phototroph Roseobacter denitrificans. Eur J Biochem 267:422–433

    Article  CAS  PubMed  Google Scholar 

  29. Shioi Y (1986) Growth-characteristics and substrate-specificity of aerobic photosynthetic bacterium Erythrobacter sp. (Och-114). Plant Cell Physiol 27:567–572

    CAS  Google Scholar 

  30. Siebert CA, Qian P, Fotiadis D et al (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23:690–700

    Article  CAS  PubMed  Google Scholar 

  31. Sistrom WR (1960) A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 22:778–785

    CAS  PubMed  Google Scholar 

  32. Swingley WD, Sadekar S, Mastrian SD et al (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189:683–690

    Article  CAS  PubMed  Google Scholar 

  33. Tolli JD, Sievert SM, Taylor CD (2006) Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment and contribution of the Roseobacter-associated clade to total CO oxidation. Appl Environ Microbiol 72:1966–1973

    Article  CAS  PubMed  Google Scholar 

  34. Tomii K, Hirokawa T, Motono C (2005) Protein structure prediction using a variety of profile libraries and 3D verification. Proteins 61:114–121

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZY, Gokan K, Kobayashi M et al (2005) Solution structures of the core light-harvesting alpha and beta polypeptides from Rhodospirillum rubrum: implications for the pigment-protein and protein-protein interactions. J Mol Biol 347:465–477

    Article  CAS  PubMed  Google Scholar 

  36. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    CAS  PubMed  Google Scholar 

  37. Zhao DH, Curatti L, Rubio LM (2007) Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Biol Chem 282:37016–37025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Professor John Hodgkiss is thanked for his help with English. This study was supported by the MOST Project 2007CB815904; NSFC 40632013; COMRA DYXM-115-02-4-3; SOA 200805068 and PhD programs foundation of Ministry of Education of China 200803841021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianzhi Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Zong, R., Zhang, F. et al. Characterization of the Photosynthetic Apparatus and Proteome of Roseobacter denitrificans . Curr Microbiol 60, 124–133 (2010). https://doi.org/10.1007/s00284-009-9515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9515-7

Keywords

Navigation