Skip to main content
Log in

Isolation and identification of ferrioxamine G and E inHafnia alvei

  • Published:
Biology of Metals Aims and scope Submit manuscript

Summary

Under conditions of iron-deprivationHafnia alvei (Enterobacteriaceae) produces ferrioxamine G as the principal siderophore. Maximum hydroxamate siderophore production occurred at medium iron limitation. The ferrioxamines were extracted, purified by gel filtration and chromatography on silica gel yielding a major and a minor siderophore fraction. The minor siderophore fraction contained three siderophores, among which ferrioxamine E could be identified by HPLC and FAB mass spectrometry. Reductive hydrolysis of the ferrioxamine G fraction yielded succinic acid and a mixture of diaminopentane and diaminobutane, as determined by gas-liquid chromatography and GLC/MS. HPLC and FAB mass spectrometry confirmed that the ferrioxamine G fraction consisted of two different species, G1 and G2, possessing molecular masses of 671 Da and 658 Da respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergey's Manual of Systematic Bacteriology (1984) Vol. 1, Krieg NR (ed) Williams and Wilkins, Baltimore

  • Berner I, Winkelmann G (1990) Ferrioxamine transport mutants and the identification of the ferrioxamine receptor protein (FoxA) inErwinia herbicola (Enterobacter agglomerans) Biol Metals 2: 197–202

    Google Scholar 

  • Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of ferrioxamine E as the principal siderophore ofErwinia herbicola (Enterobacter agglomerans) Biol Metals 1: 51–56

    Google Scholar 

  • Borgias B, Hugi AD, Raymond KN (1989) Isomerization and solution structures of desferrioxamine B complexes of A3+ and Ga3+, Inorg Chem 28: 3538–3545

    Google Scholar 

  • Braun V (1981) Escherichia coli cells containing the plasmid CoIV produce the iron ionophore aerobactin. FEMS Microbiol Lett 11: 225–228

    Google Scholar 

  • Braun V, Gross R, Köste W, Zimmermann L (1983) Plasmid and chromosomal mutants in the iron(III) aerobactin transport system ofEscherichia coli. Use of streptonigrin for selection. Mol en Genet 132: 131–139

    Google Scholar 

  • Csaky TZ (1948) On the estimtion of bound hydroxylamine in biological materials. Acta Chem Scand 2: 450–454

    Google Scholar 

  • Earhardt CF (1987) Ferrienterobactin transport inEscherichia coli, In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH Verlagsgesellschaft, Weinheim, pp 67–84

    Google Scholar 

  • Hantke K (1983) Identification of an iron uptake system specific for coprogen and rhodotorulic acid inEscherichia coli. Mol Gen Genet 191: 301–306

    Google Scholar 

  • Keller-Schierlein W (1962) 69. Stoffwechselprodukte von Actinomyceten. Ferrioxamine G. Helv Chim Acta 45: 590–595

    Google Scholar 

  • Keller-Schierlein W, Prelog V (1961) 245. Stoffwechselprodukte von Actinomyceten. Über das ferrioxamine E; ein Beitrag zur Konstitution des Nocardamins. Helv Chim Acta 44: 244–245

    Google Scholar 

  • Keller-Schierlein W, Mertens V, Prelog V, Walser A (1965) 77. Stoffwechselprodukte von Actinomyceten. Die Ferrioxamine A1, A2 und D2. Helv Chim Acta 48: 710–722

    Google Scholar 

  • Keller-Schierlein W, Huber P, Kawaguchi H (1984) Chemistry of danomycin, an iron-containing antibiotic. In: Krogsgaard-Larsen P, Christensen SB, Kofod H (eds) Natural products and drug development. Alfred Benzo Symposium 20, Munksgaard, Copenhagen pp 213–225

    Google Scholar 

  • Konetschny-Rapp S (1990) Neue mikrobielle Eisenkomplexbildner, Screening, Isolierung, Strukturaufklärung und komplexchemische Untersuchungen, Dissertation thesis, University of Tübingen

  • Langman L, Joung G, Frost G, Rosenberg H, Gibson F (1972) Enterochelin system of iron transport inEscherichia coli: mutation affecting ferric-enterochelin esterase. J. Bacteriol 112: 1142–1149

    Google Scholar 

  • Rabsch W, Reissbrodt R (1985) Biotest zum Nachweis von Hydroxamat-Fe-Chelatoren. J Basic Microbiol 25: 663–667

    Google Scholar 

  • Reissbrodt R, Rabsch W (1988) Further differentiation of Enterobacteriaceae by means of siderophore pattern analysis. Zentralbl Bakteriol Hyg A 268: 306–317

    Google Scholar 

  • Sakazaki R (1981) The genus Hafnia. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel H (eds) The procaryotes. Springer, Berlin Heidelberg New York, pp 1181–1186

    Google Scholar 

  • van der Helm D, Jalal MAF, Hossain MB (1987) The crystal structures, conformations, and configurations of siderophores, In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants, and animals. VCH Verlagsgesellschaft, Weinheim, pp 135–165

    Google Scholar 

  • Wiebe C, Winkelmann G (1975) Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. J Bacteriol 123: 837–842

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reissbrodt, R., Rabsch, W., Chapeaurouge, A. et al. Isolation and identification of ferrioxamine G and E inHafnia alvei . Biol Metals 3, 54–60 (1990). https://doi.org/10.1007/BF01141179

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01141179

Key words

Navigation