Skip to main content
Log in

Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The homodimeric flavoprotein FerB of Paracoccus denitrificans catalyzed the reduction of chromate with NADH as electron donor. When present, oxygen was reduced concomitantly with chromate. The recombinant enzyme had a maximum activity at pH 5.0. The stoichiometric ratio of NADH oxidized to chromate reduced was found to be 1.53 ± 0.09 (O2 absent) or > 2 (O2 present), the apparent K M value for chromate amounted to 70 ± 10 μM with the maximum rate of 2.9 ± 0.3 μmol NADH s−1 (mg protein)−1. Diode-array spectrophotometry and experiments with one-electron acceptors provided evidence for oxygen consumption being due to a flavin semiquinone, formed transiently during the interaction of FerB with chromate. At the whole-cell level, a ferB mutant strain displayed only slightly diminished rate of chromate reduction when compared to the wild-type parental strain. Anaerobically grown cells were more active than cells grown aerobically. The activity could be partly inhibited by antimycin, suggesting an involvement of the respiratory chain. Chromate concentrations above ten micromolars transiently slowed or halted culture growth, with the effect being more pronounced for the mutant strain. It appears, therefore, that, rather than directly reducing chromate, FerB confers a protection of cells against the oxidative stress accompanying chromate reduction. With a strain carrying the chromosomally integrated ferB promoter-lacZ fusion, it was shown that the ferB gene is not inducible by chromate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R II, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  PubMed  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  CAS  PubMed  Google Scholar 

  • Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, Francis AJ, Matin A (2006) Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol 72:7074–7082

    Article  CAS  PubMed  Google Scholar 

  • Beyer RE, Segura-Aguilar J, Di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M, Landi L, Lenaz G (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci USA 93:2528–2532

    Article  CAS  PubMed  Google Scholar 

  • Burnell JN, John P, Whatley FR (1975) A reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans. Biochem J 150:527–536

    CAS  PubMed  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  • Dailey HA Jr, Lascelles J (1977) Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms. J Bacteriol 129:815–820

    CAS  PubMed  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008a) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Proc Biochem 43:713–721

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008b) Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr(VI) polluted industrial landfill. Bioresour Technol 99:6059–6069

    Article  CAS  PubMed  Google Scholar 

  • de Vries GE, Harms N, Hoogendijk J, Stouthamer AH (1989) Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA‐modifying property. Arch Microbiol 152:52–57

    Google Scholar 

  • Ding M, Shi X (2002) Molecular mechanisms of Cr(VI)-induced carcinogenesis. Mol Cell Biochem 234(235):293–300

    Article  PubMed  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–22595

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    Article  CAS  PubMed  Google Scholar 

  • Klumpler T, Sedláček V, Marek J, Wimmerová M, Kučera I (2010) Crystallization and initial X-ray diffraction studies of the flavoenzyme NAD(P)H:acceptor oxidoreductase (FerB) from the soil bacterium Paracoccus denitrificans. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:431–434

    Article  PubMed  Google Scholar 

  • Krumpolc M, DeBoer BG, Roček J (1978) A stable chromium(V) compound. Synthesis, properties, and crystal structure of potassium bis(2-hydroxy-2-methylbutyrato)-oxochromate(V) monohydrate. J Am Chem Soc 100:145–153

    Article  CAS  Google Scholar 

  • Kučera I, Lampardová L, Dadák V (1987) Control of respiration rate in non-growing cells of Paracoccus denitrificans. Biochem J 246:779–782

    PubMed  Google Scholar 

  • Kučera I, Hedbávný R, Dadák V (1988) Separate binding sites for antimycin and mucidin in the respiratory chain of the bacterium Paracoccus denitrificans and their occurrence in other denitrifying bacteria. Biochem J 252:905–908

    PubMed  Google Scholar 

  • Landi L, Fiorentini D, Galli MC, Segura-Aguilar J, Beyer RE (1997) DT-Diaphorase maintains the reduced state of ubiquinones in lipid vesicles thereby promoting their antioxidant function. Free Radic Biol Med 22:329–335

    Article  CAS  PubMed  Google Scholar 

  • Mazoch J, Tesařík R, Sedláček V, Kučera I, Turánek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Müller F, Brüstlein M, Hemmerich P, Massey V, Walker WH (1972) Light-absorption studies on neutral flavin radicals. Eur J Biochem 25:573–580

    Article  PubMed  Google Scholar 

  • Musilová J, Sedláček V, Kučera I, Glatz Z (2009) Capillary zone electrophoresis with field enhanced sample stacking as a tool for targeted metabolome analysis of adenine nucleotides and coenzymes in Paracoccus denitrificans. J Sep Sci 32:2416–2420

    Article  PubMed  Google Scholar 

  • Opperman DJ, van Heerden E (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1907–1913

    Article  CAS  PubMed  Google Scholar 

  • Opperman DJ, Piater LA, van Heerden E (2008) A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J Bacteriol 190:3076–3082

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  PubMed  Google Scholar 

  • Petlicki J, van de Ven TGM (1998) The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solutions in contact with oxygen. J Chem Soc Faraday Trans 94:2763–2767

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Chromate reductase activity in Streptomyces sp. MC1. J Gen Appl Microbiol 56:11–18

    Article  CAS  PubMed  Google Scholar 

  • Poopal AC, Laxman RS (2009) Studies on biological reduction of chromate by Streptomyces griseus. J Hazard Mater 169:539–545

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    Article  PubMed  Google Scholar 

  • Sedláček V, van Spanning RJ, Kučera I (2009a) Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Arch Biochem Biophys 483:29–36

    Article  PubMed  Google Scholar 

  • Sedláček V, van Spanning RJ, Kučera I (2009b) Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans. Microbiology 155:1294–1301

    Article  PubMed  Google Scholar 

  • Sena MA, Scarminio IS, Collins KE, Collins CH (2000) Speciation of aqueous chromium(VI) solutions with the aid of Q-mode factor analysis followed by oblique projection. Talanta 53:453–461

    Article  CAS  PubMed  Google Scholar 

  • Shi XL, Dalal NS (1990) NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett 276:189–191

    Article  CAS  PubMed  Google Scholar 

  • Sollner S, Macheroux P (2009) New roles of flavoproteins in molecular cell biology: an unexpected role for quinone reductases as regulators of proteasomal degradation. FEBS J 276:4313–4324

    Article  CAS  PubMed  Google Scholar 

  • Sollner S, Nebauer R, Ehammer H, Prem A, Deller S, Palfey BA, Daum G, Macheroux P (2007) Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification. FEBS J 274:1328–1339

    Article  CAS  PubMed  Google Scholar 

  • Sparla F, Tedeschi G, Pupillo P, Trost P (1999) Cloning and heterologous expression of NAD(P)H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase. FEBS Lett 463:382–386

    Article  CAS  PubMed  Google Scholar 

  • Sparla F, Peciccia M, Pupillo P, Trost P (2003) Arabidopsis thaliana NQR (NAD(P)H:quinone oxidoreductase) reduces hexavalent chromium. Proceedings of Societa’ Italiana Di Biologia Vegetale Congress. http://www.sifv.it/hosting/sibv/congressi/2003/sparla.doc

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186

    Google Scholar 

  • Tatsumi H, Nakase H, Kano K, Ikeda T (1998) Mechanistic study of the autoxidation of reduced flavin and quinone compounds. J Electroanal Chem 443:236–242

    Article  CAS  Google Scholar 

  • Tesařík R, Sedláček V, Plocková J, Wimmerová M, Turánek J, Kučera I (2009) Heterologous expression and molecular characterization of the NAD(P)H:acceptor oxidoreductase (FerB) of Paracoccus denitrificans. Protein Expr Purif 68:233–238

    Article  PubMed  Google Scholar 

  • Viamajala S, Peyton BM, Apel WA, Petersen JN (2002) Chromate/nitrite interactions in Shewanella oneidensis MR-1: evidence for multiple hexavalent chromium [Cr(VI)] reduction mechanisms dependent on physiological growth conditions. Biotechnol Bioeng 78:770–778

    Article  CAS  PubMed  Google Scholar 

  • Viti C, Giovannetti L (2007) Bioremediation of soils polluted with hexavalent chromium using bacteria: a challenge. In: Singh SN, Tripathi RD (eds) Environmental bioremediation techniques. Springer, Berlin, pp 57–76

    Chapter  Google Scholar 

  • Warringer J, Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20:53–67

    Article  CAS  PubMed  Google Scholar 

  • Westheimer FH (1949) The mechanisms of chromic acid oxidations. Chem Rev 45:419–451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Czech Science Foundation (525/07/1069, P503/10/P217) and the Ministry of Education, Youth and Sports of the Czech Republic (MSM0021622413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kučera.

Additional information

Communicated by Timothy Donohue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedláček, V., Kučera, I. Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch Microbiol 192, 919–926 (2010). https://doi.org/10.1007/s00203-010-0622-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0622-4

Keywords

Navigation