Skip to main content
Log in

Acidithiobacillus ferrooxidans and its potential application

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The widely distributed Acidithiobacillus ferrooxidans (A. ferrooxidans) lives in extremely acidic conditions by fixing CO2 and nitrogen, and by obtaining energy from Fe2+ oxidation with either downhill or uphill electron transfer pathway and from reduced sulfur oxidation. A. ferrooxidans exists as different genomovars and its genome size is 2.89–4.18 Mb. The chemotactic movement of A. ferrooxidans is regulated by quorum sensing. A. ferrooxidans shows weak magnetotaxis due to formation of 15–70 nm magnetite magnetosomes with surface functional groups. The room- and low-temperature magnetic features of A. ferrooxidans are different from other magnetotactic bacteria. A. ferrooxidans has potential for removing sulfur from solids and gases, metals recycling from metal-bearing ores, electric wastes and sludge, biochemical production synthesizing, and metal workpiece machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

reproduced from Li et al. (2010b) with permission from Springer

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinci G, Guven DE (2011) Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 268(1):221–226

    Article  CAS  Google Scholar 

  • Aroca G, Urrutia H, Nunez D (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10(4):514–520

    Article  Google Scholar 

  • Arshadi M, Mousavi S (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219

    Article  CAS  Google Scholar 

  • Bajestani MI, Mousavi SM, Shojaosadati SA (2014) Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: statistical evaluation and optimization. Sep Purif Technol 132:309–316

    Article  CAS  Google Scholar 

  • Banderas A, Guiliani N (2013) Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans. Int J Mol Sci 14(8):16901–16916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrie JD, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic microorganisms. Adv Microb Physiol 54:201–255

    Article  CAS  Google Scholar 

  • Barron JL, Lueking DR (1990) Growth and maintenance of Thiobacillus ferrooxidans cells. Appl Environ Microbiol 56(9):2801–2806

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bassler BL (2016) Quorum sensing and its control. FASEB J 30(1):1

    Article  CAS  Google Scholar 

  • Biologie Ftfr (2011) Mechanism and regulation of magnetosomal iron uptake and biomineralization in Magnetospirillum gryphiswaldense. Ludwig-Maximilians-Universität München

  • Blake RC, Shute EA (1994) Respiratory enzymes of Thiobacillus ferrooxidans. Kinetic properties of an acid-stable iron: rusticyanin oxidoreductase. Biochemistry 33(31):9220–9228

    Article  PubMed  CAS  Google Scholar 

  • Bosecker CGK (1999) Leaching heavy metals from contaminated soil by using Thiobacillus ferrooxidans or Thiobacillus thiooxidans. Geomicrobiol J 16(3):233–244

    Article  Google Scholar 

  • Brasseur G, Bruscella P, Bonnefoy V, Lemesle-Meunier D (2002) The bc 1 complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction: is there a second bc 1 complex? Biochim Biophys Acta 1555(1–3):37–43

    Article  PubMed  CAS  Google Scholar 

  • Brasseur G, Levicán G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D (2004) Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta 1656(2–3):114–126

    Article  PubMed  CAS  Google Scholar 

  • Brierley CL (2008) How will biomining be applied in future? T Nonferr Metal Soc 18(6):1302–1310

    Article  CAS  Google Scholar 

  • Campodonico MA, Vaisman D, Castro JF, Razmilic V, Mercado F, Andrews BA, Feist AM, Asenjo JA (2016) Acidithiobacillus ferrooxidans’s comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications. Metab Eng Commun 3:84–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty R, Roy P (1992) Chemotaxis of chemolithotrophic Thiobacillus ferrooxidans toward thiosulfate. FEMS Microbiol Lett 98(1–3):9–12

    Article  CAS  Google Scholar 

  • Chen P, Yan L, Leng F, Nan W, Yue X, Zheng Y, Feng N, Li H (2011) Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour Technol 102(3):3260–3267

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yang Y, Liu C, Dong F, Liu B (2015) Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere 141:162–168

    Article  PubMed  CAS  Google Scholar 

  • Chi A, Valenzuela L, Beard S, Mackey AJ, Shabanowitz J, Hunt DF, Jerez CA (2007) Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans a high throughput proteomics analysis. Mol Cell Proteom 6(12):2239–2251

    Article  CAS  Google Scholar 

  • Crundwell FK (1997) The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans. Bioelectrochem Bioenerg 43(1):115–122

    Article  CAS  Google Scholar 

  • Dastidar MG, Malik A, Roychoudhury PK (2000) Biodesulphurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energy Convers Manag 41(4):375–388

    Article  CAS  Google Scholar 

  • Dave SR, Gupta KH, Tipre DR (2008) Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Bioresour Technol 99(16):7514–7520

    Article  PubMed  CAS  Google Scholar 

  • DiSpirito AA, Tuovinen OH (1982) Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch Microbiol 133(1):28–32

    Article  CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2(8):621–631

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Lin H, Xu X, Zhou S (2013) Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals. Hydrometallurgy 140:42–47

    Article  CAS  Google Scholar 

  • Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS (2010) Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiol 10(1):229–244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farah C, Vera M, Morin D, Haras D, Jerez CA, Guiliani N (2005) Evidence for a functional quorum-sensing type AI-1 system in the extremophilic bacterium Acidithiobacillus ferrooxidans. Appl Environ Microbiol 71(11):7033–7040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gale NL, Beck JV (1967) Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans. J Bacteriol 94(4):1052–1059

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ghavidel A, Naji Rad S, Alikhani HA, Sharari M, Ghanbari A (2018) Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH? J Mater Cycles Waste Manag 20:1–9

    Article  CAS  Google Scholar 

  • Giaveno A, Donati E (2001) Bioleaching of heazelwoodite by Thiobacillus spp. Process Biochem 36(10):955–962

    Article  CAS  Google Scholar 

  • González A, Bellenberg S, Mamani S, Ruiz L, Echeverría A, Soulère L, Doutheau A, Demergasso C, Sand W, Queneau Y (2013) AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 97(8):3729–3737

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Bai J, Dong B, Zhuang X, Zhao J, Zhang C, Wang J, Shih K (2017) Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 171:172–178

    Article  CAS  Google Scholar 

  • Guiliani N, Jerez CA (2000) Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans. Appl Environ Microbiol 66(6):2318–2324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta A, Birendra K, Mishra R (2003) Study on the recovery of zinc from Moore cake: a biotechnological approach. Miner Eng 16(1):41–43

    Article  CAS  Google Scholar 

  • Haghshenas DF, Alamdari EK, Bonakdarpour B, Darvishi D, Nasernejad B (2009a) Kinetics of sphalerite bioleaching by Acidithiobacillus ferrooxidans. Hydrometallurgy 99(3–4):202–208

    Article  CAS  Google Scholar 

  • Haghshenas DF, Alamdari EK, Torkmahalleh MA, Bonakdarpour B, Nasernejad B (2009b) Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Miner Eng 22(15):1299–1306

    Article  CAS  Google Scholar 

  • Haghshenas DF, Bonakdarpour B, Alamdari EK, Nasernejad B (2012) Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors. Hydrometallurgy 111–112:22–28

    Article  CAS  Google Scholar 

  • Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157(6):1551–1564

    Article  PubMed  CAS  Google Scholar 

  • Holmes DS, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, Heidelberg

  • Hong FF, He H, Liu JY, Tao XX, Zheng L, Zhao YD (2013) Comparison analysis of coal biodesulfurization and coal’s pyrite bioleaching with Acidithiobacillus ferrooxidans. Sci World J 10:184964–184973

    Google Scholar 

  • Hou Q, Fang D, Liang J, Zhou L (2015) Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans. PLoS One 10(3):e0120966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang B (2009) Study on removing low concentration SO2 from flue gas by immobilization technology of miroorganism. Kunming University of Science and Technology, Kunming, China

  • Ishii T, Kawaichi S, Nakagawa H, Hashimoto K, Nakamura R (2015) From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. Front Microbiol 6:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadhav U, Hocheng H (2016) Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper–nickel alloy. Environ Technol 37(20):2669–2677

    Article  PubMed  CAS  Google Scholar 

  • Jadhav U, Hong H (2013) Extraction of silver from spent silver oxide–zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant. J Clean Prod 44(2):39–44

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995a) Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem 30(3):225–236

    Article  CAS  Google Scholar 

  • Jensen AB, Webb C (1995b) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17(1):2–10

    Article  CAS  Google Scholar 

  • Jerez CA (2001) Chemotactic transduction in biomining microorganisms. Hydrometallurgy 59(2–3):347–356

    Article  CAS  Google Scholar 

  • Jiang G, Zhao S, Luo J, Wang Y, Yu W, Zhang C (2010) Microbial desulfurization for NR ground rubber by Thiobacillus ferrooxidans. J Appl Polym Sci 116(5):2768–2774

    CAS  Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Karavaiko GI, Tat’yana PT, Kondrat’eva TF, Lysenko AM, Tat’yana VK, Ageeva SN, Muntyan LN, Tat’yana AP (2003) Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53(1):113–119

    Article  PubMed  CAS  Google Scholar 

  • Kernan T, Majumdar S, Li X, Guan J, West AC, Banta S (2016) Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Biotechnol Bioeng 113(1):189–197

    Article  PubMed  CAS  Google Scholar 

  • Kim SD, Baeb JE, Park HS, Cha DK (2005) Bioleaching of cadmium and nickel from synthetic sediments by Thiobacillus ferrooxidans. Environ Geochem Health 27(3):229–235

    Article  PubMed  CAS  Google Scholar 

  • Ko MS, Park HS, Kim KW, Lee JU (2013) The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Environ Geochem Health 35(6):727–733

    Article  PubMed  CAS  Google Scholar 

  • Kondratyeva TF, Muntyan LN, Karavaiko GI (1995) Zinc-and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes. Microbiology 141(5):1157–1162

    Article  CAS  Google Scholar 

  • Kurade MB, Murugesan K, Selvam A, Yu S-M, Wong JWC (2016) Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability. Bioresour Technol 217:179–185

    Article  PubMed  CAS  Google Scholar 

  • Lambert F, Gaydardzhiev S, Léonard G, Lewis G, Bareel PF, Bastin D (2015) Copper leaching from waste electric cables by biohydrometallurgy. Miner Eng 76:38–46

    Article  CAS  Google Scholar 

  • Lee EY, Lee NY, Cho K-S, Ryu HW (2006) Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. J Biosci Bioeng 101(4):309–314

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li H (2014) Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors. J Basic Microbiol 54(3):226–231

    Article  PubMed  CAS  Google Scholar 

  • Li J, Pan Y, Liu Q, Yu-Zhang K, Menguy N, Che R, Qin H, Lin W, Wu W, Petersen N, Xa Yang (2010a) Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth Planet Sci Lett 293(3–4):368–376

    Article  CAS  Google Scholar 

  • Li YQ, Wan DS, Huang SS, Leng FF, Yan L, Ni YQ, Li HY (2010b) Type IV Pili of Acidithiobacillus ferrooxidans are necessary for sliding, twitching motility, and adherence. Curr Microbiol 60(1):17–24

    Article  PubMed  CAS  Google Scholar 

  • Li X, Mercado R, Berlinger S, Banta S, West AC (2014) Engineering Acidithiobacillus ferrooxidans growth media for enhanced electrochemical processing. AIChE J 60(12):4008–4013

    Article  CAS  Google Scholar 

  • Li X, West AC, Banta S (2016) Enhancing isobutyric acid production from engineered Acidithiobacillus ferrooxidans cells via media optimization. Biotechnol Bioeng 113(4):790–796

    Article  PubMed  CAS  Google Scholar 

  • Liang G, Li P, Liu W, Wang B (2016) Enhanced bioleaching efficiency of copper from waste printed circuit boards (PCBs) by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans. J Mater Cycles Waste Manag 18(4):742–751

    Article  CAS  Google Scholar 

  • Liu W-B, Wu H-Y, Liu X-D, Liu X-X (2008) Influence of different Fe sources and concentrations on formation of magnetosomes in Acidithiobacillus ferrooxidans. T Nonferr Metal Soc 18(6):1379–1385

    Article  CAS  Google Scholar 

  • Lombardi AT, Garcia O (2002) Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Res 36(13):3193–3202

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud A, Cézac P, Hoadley AFA, Contamine F, D’Hugues P (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegrad 19:118–146

    Article  CAS  Google Scholar 

  • Makita M, Esperón M, Pereyra B, López A, Orrantia E (2004) Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. BMC Biotechnol 4(1):22–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N (2016) Insights into the quorum sensing regulon of the acidophilic Acidithiobacillus ferrooxidans revealed by transcriptomic in the presence of an Acyl homoserine lactone superagonist analog. Front Microbiol 7:1365

    Article  PubMed  PubMed Central  Google Scholar 

  • Mannivannan T, Sandhya S, Pandey RA (2008) Microbial desulfurization of coal by chemoautotrophic Thiobacillus ferrooxidans—an iron mine isolate. J Environ Sci Health Part A 29(10):2045–2061

    Google Scholar 

  • Martínez-Bussenius C, Navarro CA, Orellana L, Paradela A, Jerez CA (2016) Global response of Acidithiobacillus ferrooxidans ATCC 53993 to high concentrations of copper: a quantitative proteomics approach. J Proteom 145:37–45

    Article  CAS  Google Scholar 

  • Mousavi SM, Yaghmaei S, Vossoughi M, Jafari A, Roostaazad R (2006) Zinc extraction from Iranian low-grade complex zinc–lead ore by two native microorganisms: Acidithiobacillus ferrooxidans and Sulfobacillus. Int J Miner Process 80(2):238–243

    Article  CAS  Google Scholar 

  • Mukherjee C, Jones FS, Bigham JM, Tuovinen OH (2016) Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans. Mater Sci Eng C 66:164–169

    Article  CAS  Google Scholar 

  • Muñoz JA, Ballester A, González F, Blázquez ML (1995) A study of the bioleaching of a Spanish uranium ore. Part II: orbital shaker experiments. Hydrometallurgy 38(1):59–78

    Article  Google Scholar 

  • Murugesan K, Ravindran B, Selvam A, Kurade MB, Yu S-M, Wong JWC (2014) Enhanced dewaterability of anaerobically digested sewage sludge using Acidithiobacillus ferrooxidans culture as sludge conditioner. Bioresour Technol 169:374–379

    Article  PubMed  CAS  Google Scholar 

  • Nan W, Zhi D, Leng F, Yan L, Chen P, Yue X, Li H (2011) Quorum-sensing system in Acidithiobacillus ferrooxidans involved in its resistance to Cu2+. Lett Appl Microbiol 53(1):84–91

    Article  CAS  Google Scholar 

  • Nguyen VK, Lee MH, Park HJ, Lee J-U (2015) Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. J Ind Eng Chem 21:451–458

    Article  CAS  Google Scholar 

  • Ni YQ, Yang Y, Bao JT, He KY, Li HY (2007) Inter- and intraspecific genomic variability of the 16S–23S intergenic spacer regions (ISR) in representatives of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 270(1):58–66

    Article  PubMed  CAS  Google Scholar 

  • Nie H, Zhu N, Cao Y, Xu Z, Wu P (2015) Immobilization of Acidithiobacillus ferrooxidans on cotton gauze for the bioleaching of waste printed circuit boards. Appl Biochem Biotechnol 177(3):675–688

    Article  PubMed  CAS  Google Scholar 

  • Nowaczk NR, Harwart S, Melles M (2000) A rock magnetic record from Lama Lake, Taymyr Peninsula, northern Central Siberia. J Paleolimnol 23(3):227–241

    Article  Google Scholar 

  • Ohmura N, Tsugita K, Koizumi JI, Saika H (1996) Sulfur-binding protein of flagella of Thiobacillus ferrooxidans. J Bacteriol 178(19):5776–5780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oprime MEAG, Garcia O, Cardoso AA (2001) Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochem 37(2):111–114

    Article  CAS  Google Scholar 

  • Osorio H, Mangold S, Denis Y, Ñancucheo I, Esparza M, Johnson DB, Bonnefoy V, Dopson M, Holmes DS (2013) Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 79(7):2172–2181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal S, Pradhan D, Das T, Sukla LB, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J Microbiol 50(1):70–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel MJ, Tipre DR, Dave SR (2011) Isolation, identification, characterization and polymetallic concentrate leaching studies of tryptic soy- and peptone-resistant thermotolerant Acidithiobacillus ferrooxidans SRDSM2. Bioresour Technol 102(2):1602–1607

    Article  PubMed  CAS  Google Scholar 

  • Pogaku R, Kodali B (2006) Optimization of bacterial oxidation process parameters for selective leaching of nickel by Thiobacillus Ferrooxidans. Int J Chem React Eng 4(1):1–14

    Google Scholar 

  • Popa R, Fang W, Nealson KH, Souza-Egipsy V, Berquó TS, Banerjee SK, Penn LR (2009) Effect of oxidative stress on the growth of magnetic particles in Magnetospirillum magneticum. Int Microbiol 12(1):49–57

    PubMed  CAS  Google Scholar 

  • Pósfai M, Moskowitz BM, Arató B, Schüler D, Flies C, Bazylinski DA, Frankel RB (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249(3–4):444–455

    Article  CAS  Google Scholar 

  • Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L (2011) Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bioresour Technol 102(7):4697–4702

    Article  PubMed  CAS  Google Scholar 

  • Quatrini R, Jedlicki E, Holmes DS (2005) Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 32(11–12):606–614

    Article  PubMed  CAS  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Ratouchniak J, Veloso F, Valdes J, Lefimil C, Silver S, Roberto F, Orellana O (2006) Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 83(1–4):263–272

    Article  CAS  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genom 10(1):394–412

    Article  CAS  Google Scholar 

  • Rai C (1985) Microbial desulfurization of coals in a slurry pipeline reactor using Thiobacillus ferrooxidans. Biotechnol Prog 1(3):200–204

    Article  PubMed  CAS  Google Scholar 

  • Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70(8):4491–4498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rastegar SO, Mousavi SM, Shojaosadati SA (2014) Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Bioresour Technol 167:61–68

    Article  PubMed  CAS  Google Scholar 

  • Rastegar SO, Mousavi SM, Shojaosadati SA, Sarraf Mamoory R (2015) Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy 157:50–59

    Article  CAS  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4(1):13–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivas M, Seeger M, Holmes DS, Jedlicki E (2005) A Lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol Res 38(2–3):283–297

    PubMed  CAS  Google Scholar 

  • Rivas M, Seeger M, Jedlicki E, Holmes DS (2007) Second Acyl homoserine lactone production system in the extreme acidophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 73(10):3225–3231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson LA, Kuenen JG (2006) The genus Thiobacillus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5. Proteobacteria: alpha and beta subclasses. Springer, New York, pp 812–827

    Chapter  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63(3):239–248

    Article  PubMed  CAS  Google Scholar 

  • Sampson MI, Phillips CV, Ii RCB (2000) Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Miner Eng 13(4):373–389

    Article  CAS  Google Scholar 

  • Sandy Jones F, Bigham JM, Gramp JP, Tuovinen OH (2014) Synthesis and properties of ternary (K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions. Mater Sci Eng C 44:391–399

    Article  CAS  Google Scholar 

  • Schrader JA, Holmes DS (1988) Phenotypic switching of Thiobacillus ferrooxidans. J Bacteriol 170(9):3915–3923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279(5356):1519–1522

    Article  PubMed  CAS  Google Scholar 

  • Shah MB, Tipre DR, Dave SR (2014) Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones. Waste Manag Res 32(11):1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Shah MB, Tipre DR, Purohit MS, Dave SR (2015) Development of two-step process for enhanced biorecovery of Cu–Zn–Ni from computer printed circuit boards. J Biosci Bioeng 120(2):167–173

    Article  PubMed  CAS  Google Scholar 

  • Sugio T, Hirayama K, Inagaki K, Tanaka H, Tano T (1992a) Molybdenum oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 58(5):1768–1771

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sugio T, Hirose T, Ye L-Z, Tano T (1992b) Purification and some properties of sulfite: ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 174(12):4189–4192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeuchi F, Iwahori K, Kamimura K, Negishi A, Maeda T, Sugio T (2001) Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG 2-2. Biosci Biotechnol Biochem 65(9):1981–1986

    Article  PubMed  CAS  Google Scholar 

  • Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol 62(5):605–611

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tipre DR, Dave SR (2004) Bioleaching process for Cu–Pb–Zn bulk concentrate at high pulp density. Hydrometallurgy 75(1):37–43

    Article  CAS  Google Scholar 

  • Tipre DR, Vora SB, Dave SR (2004) Medium optimization for bioleaching of metals from Indian bulk polymetallic concentrate. Indian J Biotechnol 3:86–91

    CAS  Google Scholar 

  • Ulloa R, Moya-Beltrán A, Issotta F, Nuñez H, Covarrubias PC, Donati ER, Quatrini R, Giaveno A (2017) Metagenome-derived draft genome sequence of Acidithiobacillus ferrooxidans RV1 from an abandoned gold tailing in Neuquén, Argentina. Solid State Phenom 262:339–442

    Article  Google Scholar 

  • Valdés J, Veloso F, Jedlicki E, Holmes D (2003) Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genom 4(1):51–65

    Article  Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genom 9(1):597–620

    Article  CAS  Google Scholar 

  • Waltenbury DR, Leduc LG, Ferroni GD (2005) The use of RAPD genomic fingerprinting to study relatedness in strains of Acidithiobacillus ferrooxidans. J Microbiol Methods 62(1):103–112

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yu W, Zhao S, Jiang G (2011) Isolation and identification of Acidithiobacillus ferrooxidans and its desulfurization reclamation of ground tyre rubber. J B Univ Chem Technol 38(1):105–109

    CAS  Google Scholar 

  • Wang Y, Li H, Li D (2013) Biosynthesis of natrojarosite by immobilized iron-oxidizing bacteria. Int J Miner Process 120:35–38

    Article  CAS  Google Scholar 

  • Wang H, Ju L-K, Castaneda H, Cheng G, B-M Zhang Newby (2014) Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans. Corros Sci 89:250–257

    Article  CAS  Google Scholar 

  • Watling HR (2008) The bioleaching of nickel-copper sulfides. Hydrometallurgy 91(1–4):70–88

    Article  CAS  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101(22):8281–8284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xenofontos E, Feidiou A, Constantinou M, Constantinides G, Vyrides I (2015) Copper biomachining mechanisms using the newly isolated Acidithiobacillus ferrooxidans B1. Corros Sci 100:642–650

    Article  CAS  Google Scholar 

  • Xia L, Dai S, Yin C, Hu Y, Liu J, Qiu G (2009) Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. J Ind Microbiol Biotechnol 36(6):845–851

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Liu X, Liu W, Qiu G (2005) Extraction of magnetosome from Acidithiobacillus ferrooxidans. Biomagnetism 5(3):7–10

    Google Scholar 

  • Xiong H, Liao Y, Zhou L, Xu Y, Wang S (2008) Biosynthesis of nanocrystal akaganéite from FeCl2 solution oxidized by Acidithiobacillus ferrooxidans cells. Environ Sci Technol 42(11):4165–4169

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka T (2008) Oxidation and reduction of iron by bacteria, vol 5. Springer, Tokyo

    Google Scholar 

  • Yan L, Yin H, Zhang S, Duan J, Li Y, Chen P, Li H (2010a) Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans. Bioresour Technol 101(16):6572–6575

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Yin HH, Zhang SA, Leng FF, Nan WB, Li HY (2010b) Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater 178(1–3):209–217

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Yue X, Zhang S, Chen P, Xu Z, Li Y, Li H (2012a) Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans. Mater Sci Eng C 32(7):1802–1807

    Article  CAS  Google Scholar 

  • Yan L, Zhang S, Li X, Xinxin T, Zi Y (2012b) Magnetic properties of Acidithiobacillus ferrooxidans and the effects of iron sources on magnetosome formation. J Heilongjiang Bayi Agric Univ 24(1):23–27

    Google Scholar 

  • Yan L, Zhang S, Chen P, Wang W, Wang Y, Li H (2013) Magnetic properties of Acidithiobacillus ferrooxidans. Mater Sci Eng C 33(7):4026–4031

    Article  CAS  Google Scholar 

  • Yan L, Zhang S, Liu H, Wang W, Chen P, Li H (2016) Optimization of magnetosome production by Acidithiobacillus ferrooxidans using desirability function approach. Mater Sci Eng C 59:731–739

    Article  CAS  Google Scholar 

  • Yan L, Hu H, Zhang S, Chen P, Wang W, Li H (2017a) Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China. Electron J Biotechnol 25:50–57

    Article  CAS  Google Scholar 

  • Yan S, Zheng G, Meng X, Zhou L (2017b) Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions. Sep Purif Technol 185:83–93

    Article  CAS  Google Scholar 

  • Yang C, Qin W, Lai S, Wang J, Zhang Y, Jiao F, Ren L, Zhuang T, Chang Z (2011) Bioleaching of a low grade nickel–copper–cobalt sulfide ore. Hydrometallurgy 106(1–2):32–37

    Article  CAS  Google Scholar 

  • Yang Y, Chen S, Li S, Chen M, Chen H, Liu B (2014) Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J Biotechnol 173(6):24–30

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Zhu N, Shen W, Zhang T, Wu P (2017) Bioleaching of copper from metal concentrates of waste printed circuit boards by a newly isolated Acidithiobacillus ferrooxidans strain Z1. J Mater Cycles Waste Manag 19(1):247–255

    Article  CAS  Google Scholar 

  • Yarzábal A, Brasseur G, Bonnefoy V (2002) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209(2):189–195

    Article  PubMed  Google Scholar 

  • Yarzábal A, Duquesne K, Bonnefoy V (2003) Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC 33020 in sulfur-and in ferrous iron media. Hydrometallurgy 71(1–2):107–114

    Article  CAS  Google Scholar 

  • Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150(7):2113–2123

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Huang B, Wang Y (2007) Studying advance in flue gas desulfurization by Thiobacillus ferroxidans. Acta Agric Jiangxi 19(6):121–124

    Google Scholar 

  • Zammit CM, Mangold S, Rao Jonna V, Mutch LA, Watling HR, Dopson M, Watkin ELJ (2012) Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93(1):319–329

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Deng X, Luo S, Luo X, Zou J (2012) A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium–ion batteries. J Hazard Mater 199–200:164–169

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Luo S, Deng X, Li L, Au C (2013) Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner Eng 49(8):40–44

    Article  CAS  Google Scholar 

  • Zhang S, Yan L, Li H, Liu H (2012) Optimal conditions for growth and magnetosome formation of Acidithiobacillus ferrooxidans. Afr J Microbiol 6(32):6142–6151

    CAS  Google Scholar 

  • Zhu J, Gan M, Zhang D, Hu Y, Chai L (2013) The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability. Mater Sci Eng C 33(5):2679–2685

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41471201, 31100006), Natural Science Foundation of Heilongjiang Province of China (QC2014C023), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2015086), Open Foundation of the Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region (201704), Scientific Research Staring Foundation in HBAU (XZR2014-15) and Technology Program of Land Reclamation General Bureau of Heilongjiang (HNK135-04-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yan.

Ethics declarations

Ethical statement

This manuscript is original and has not been submitted elsewhere for publication, in whole or in part, and no data was fabricated or manipulated (including images) in this work. The submission has been received explicitly from all co-authors. All the authors listed have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yan, L., Xing, W. et al. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 22, 563–579 (2018). https://doi.org/10.1007/s00792-018-1024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1024-9

Keywords

Navigation