Skip to main content
Log in

Application of BEMF-MRAS with Kalman filter in sensorless control of induction motor drive

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper describes an induction motor speed estimation using the observer with back electromotive force-based model reference adaptive system and Kalman filter. In the first part of the paper, there is a mathematical description of the rotor speed observer. The second part of the paper includes Kalman filter that is used for the filtration of measured stator currents and obtaining their time derivatives. The third part contains a description of the laboratory workplace with the induction motor drive and active load unit that was used for an experimental verification of the rotor speed observer. The last section of the paper shows experimental results that were obtained for different changes in the induction motor speed. The experimental results confirmed expected dynamic properties of the induction motor drive with sensorless control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\mathbf{u}_\mathrm{S}^{S}\) :

Stator voltage vector in [\(\alpha ,\beta \)] stator coordinate system

\(\mathbf{e}_\mathrm{m}^{S}\) :

Back electromotive force vector in [\(\alpha ,\beta \)] stator coordinate system

\(\mathbf{i}_\mathrm{m}^{S}\) :

Magnetizing current vector in [\(\alpha , \beta \)] stator coordinate system

\(\mathbf{i}_\mathrm{S}^{S}\) :

Stator current vector in [\(\alpha ,\beta \)] stator coordinate system

\(\mathbf{i}_\mathrm{S}^{F}\) :

Stator current vector in [xy] rotating field coordinate system

\(i_{{\mathrm{S}x}}\) :

Magnetizing component of the stator current vector in [xy] rotating field coordinate system

\(i_{{\mathrm{S}y}}\) :

Torque component of the stator current vector in rotating [xy] field coordinate system

\(i_{{\mathrm{Sxref}}}\) :

Reference magnetizing current component

\({\varvec{\Psi }}_\mathrm{R}^{S}\) :

Rotor flux vector in [\(\alpha , \beta \)] stator coordinate system

\(\varPsi _{{\mathrm{Rref}}}\) :

Reference rotor flux

\(\varPsi _\mathrm{R\_{\mathrm{est}}}\) :

Estimated rotor flux

\(\varPsi _{{\mathrm{RN}}}\) :

Nominal rotor flux

\(L_\mathrm{m}\) :

Magnetizing inductance

\(L_\mathrm{R}\) :

Rotor inductance

\(L_\mathrm{S }\) :

Stator inductance

\(R_\mathrm{R}\) :

Rotor phase resistance

\(R_\mathrm{S}\) :

Stator phase resistance

\(\sigma \) :

Total leakage constant

\(T_\mathrm{R}\) :

Rotor time constant

\(\omega _\mathrm{m}\) :

Real rotor angular speed

\(\omega _\mathrm{m\_{{est}}}\) :

Estimated rotor angular speed

\(\omega _{{\mathrm{ref}}}\) :

Reference rotor angular speed

\(\omega _{{\mathrm{mN}}}\) :

Nominal rotor angular speed

\(\gamma \) :

Orienting angle

P :

Covariance matrix of state vector

Q :

Covariance matrix of system noise vector

R :

Covariance matrix of measurement noise vector

K :

Kalman gain

\(\hat{}\) :

Estimated quantity

\(\tilde{}\) :

Predicted quantity

x(t):

Measured quantity

\(\dot{x}(t)\) :

Time derivative of the measured quantity

x :

State vector

\({\hat{\mathbf{x}}}\) :

Estimated state vector

\({\tilde{\mathbf{x}}}\) :

Predicted state vector

FC:

Frequency converter

PWM:

Pulse width modulation

IS:

Incremental sensor

BEMF-MRAS:

Speed estimation block using BEMF-MRAS

IM:

Induction motor

References

  1. Vas PP (1998) Sensorless vector and direct torque control. Oxford University Press, Oxford

    Google Scholar 

  2. Bose BK (2013) Global energy scenario and impact of power electronics in 21st century. IEEE Trans Ind Electron 60(7):2638–2651

    Article  Google Scholar 

  3. Zaky MS (2015) High performance DTC of induction motor drives over a wide speed range. Electr Eng 97(2):139–154

    Article  Google Scholar 

  4. Gowri KS, Reddy TB, Babu CS (2010) Direct torque control of induction motor based on advanced discontinuous PWM algorithm for reduced current ripple. Electr Eng 92(7–8):245–255

    Article  Google Scholar 

  5. Boudouda A, Boudjerda N, Drissi KE, Kerroum K (2016) Combined random space vector modulation for a variable speed drive using induction motor. Electr Eng 98(1):1–15

    Article  Google Scholar 

  6. Fedor P, Perdukova D (2015) Fuzzy model based optimal continuous line controller. In: Proceedings of the 8th international scientific symposium on electrical power engineering (Elektroenergetika 2015). Stara Lesna, Slovakia, pp 404–407

  7. Vittek J, Vavrus V, Bris P, Gorel L (2013) Forced dynamics control of the elastic joint drive with single rotor position sensor. Automatika 54(3):337–347

    Google Scholar 

  8. Sladecek V, Palacky P, Vaculik P, Oplustil J (2012) Voltage converters with switched-capacitor. In: Proceedings of progress in electromagnetics research symposium (PIERS 2012). Kuala Lumpur, Malaysia, pp 934–937

  9. Neborak I, Simonik P, Odlevak L (2013) Electric vehicle modelling and simulation. In: Proceedings of the 14th international scientific conference on electric power engineering 2013. Czech Republic, Kouty nad Desnou, pp 693–696

  10. Frivaldsky M, Drgona P, Spanik P (2013) Experimental analysis and optimization of key parameters of ZVS mode and its application in the proposed LLC converter designed for distributed power system application. Int J Electr Power 47:448–456

    Article  Google Scholar 

  11. Chlebis P, Moravcik P, Simonik P (2009) Method of direct torque control for three-level voltage inverter. In: Proceedings of the 13th European conference on power electronics and applications (EPE 2009). Barcelona, Spain, pp 4051–4056

  12. Simonik P, Havel A, Hromjak M, Chlebis P (2012) Active charging stations for electric vehicles charging. In: Proceedings of progress in electromagnetics research symposium (PIERS 2012). Kuala Lumpur, Malaysia, pp 995–998

  13. Lettl J, Fligl S, Bauer J, Ryvkin S (2012) Simulation of the matrix converter drive with sliding mode control. In: Proceedings of progress in electromagnetics research symposium (PIERS 2012). Kuala Lumpur, Malaysia, pp 929–933

  14. Arab Markadeh GR, Soltani J (2006) Robust direct torque and flux control of adjustable speed sensorless induction machine drive based on space vector modulation using a PI predictive controller. Electr Eng 88(6):485–496

    Article  Google Scholar 

  15. Derdiyok A, Basci A (2016) Speed estimation of an induction machine based on designed Lyapunov candidate functions. Electr Eng 98(1):67–75

    Article  Google Scholar 

  16. Girovsky P, Timko J, Zilkova J (2012) Shaft sensor-less FOC control of an induction motor using neural estimators. Acta Polytech Hung 9(4):31–45

    Google Scholar 

  17. Lascu C, Boldea I, Blaabjerg F (2006) Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives. IEEE Trans Ind Electron 53(1):57–65

    Article  Google Scholar 

  18. Iacchetti MF, Carmeli MS, Dezza FC, Perini R (2010) A speed sensorless control based on a MRAS applied to a double fed induction machine drive. Electr Eng 91(6):337–345

    Article  Google Scholar 

  19. Stojic DM (2012) An algorithm for induction motor stator flux estimation. Adv Electr Comput Eng 12(3):47–52

    Article  Google Scholar 

  20. Palacky P, Hudecek P, Havel A (2013) Real-time estimation of induction motor parameters based on the genetic algorithm. In: Proceedings of the international joint conference CISIS’12-ICEUTE’12-SOCO’12 special sessions. Advances in Intelligent Systems and Computing vol 189, pp 401–409

  21. Chandrakala KRMV, Balamurugan S, Sankaranarayanan K (2012) Genetic algorithm tuned optimal variable structure system controller for enhanced load frequency control. Int Rev Electr Eng-I 7(2):4105–4112

    Google Scholar 

  22. Orlowska-Kowalska T, Dybkowski M (2010) Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive. IEEE Trans Ind Electron 57(4):1296–1308

    Article  Google Scholar 

  23. Maiti S, Verma V, Chakraborty C, Hori Y (2012) An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement. IEEE Trans Ind Inform 8(4):757–766

    Article  Google Scholar 

  24. Lettl J, Fligl S, Bauer J, Vlcek M (2012) Comparison of gamma and T models for convector controlled induction machine drives. In: Proceedings of progress in electromagnetics research symposium (PIERS 2012). Kuala Lumpur, Malaysia, pp 925–928

  25. Neborak I, Sladecek V, Kuchar M (2015) Modelling and simulation of induction machine and frequency converter considering power losses. In: Proceedings of the 16th international scientific conference on electric power engineering (EPE 2015). Czech Republic, Kouty nad Desnou, pp 251–255

  26. Peroutka Z (2005) Development of sensorless PMSM drives: application of extended Kalman filter. In: Proceedings of the IEEE international symposium on industrial electronics. Dubrovnik, Croatia, pp 1647–1652

  27. Alonge F, D’Ippolito F, Sferlazza A (2014) Sensorless control of induction-motor drive based on robust Kalman filter and adaptive speed estimation. IEEE Trans Ind Electron 61(3):1444–1453

    Article  Google Scholar 

  28. Auger F, Hilairet M, Guerrero JM, Monmasson E, Orlowska-Kowalska T, Katsura S (2013) Industrial applications of the Kalman filter: A review. IEEE Trans Ind Electron 60(12):5458–5471

    Article  Google Scholar 

  29. Laamari Y, Chafaa K, Athamena B (2015) Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive. Electr Eng 97(2):129–138

    Article  Google Scholar 

  30. Perdukova D, Fedor P (2013) Virtual laboratory for the study of technological process automation. Int J Electr Eng Educ 29(1):230–238

    Google Scholar 

  31. Spanik P, Drgona P, Frivaldsky M, Prikopova A (2010) Design and application of full digital control system for LLC multiresonant converter. Elektron Elektrotech 10:75–78

    Google Scholar 

  32. Dobrovsky M (2013) Sensorless control of induction motor using nonlinear observers. Dissertation, VSB-Technical University of Ostrava

Download references

Acknowledgements

This paper was supported by the projects: Center for Intelligent Drives and Advanced Machine Control (CIDAM) project, Reg. No. TE02000103 funded by the Technology Agency of the Czech Republic and Project Reg. No. SP2017/104 funded by the Student Grant Competition of VSB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Brandstetter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandstetter, P., Dobrovsky, M., Kuchar, M. et al. Application of BEMF-MRAS with Kalman filter in sensorless control of induction motor drive. Electr Eng 99, 1151–1160 (2017). https://doi.org/10.1007/s00202-017-0613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0613-4

Keywords

Navigation