Skip to main content
Log in

Speed estimation of an induction machine based on designed Lyapunov candidate functions

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper describes a new approach to estimate speed of the induction machine from measured terminal voltages and currents. In this approach, the speed is assumed to be unknown constants, because it changes slowly compared to electrical variables such as currents and fluxes. Based on this assumption, a state observer is defined to eliminate the flux information of the machine. Then, a Lyapunov function and a new candidate expression for the time derivative of Lyapunov function that guaranties the stability conditions of the system dynamics are developed from which the speed of the machine is derived. The proposed system is analyzed and verified by both simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rajashekara K, Kawamura A, Matsuse K (1996) Sensorless control of AC motor drives-speed and position sensorless operation. IEEE Press, New York

    Google Scholar 

  2. Ben-Brahim L, Tadakuma S, Akdag A (1999) Speed control of induction motor without rotational transducers. IEEE Trans Ind Appl 35:844–849

    Article  Google Scholar 

  3. Tajima H, Hori Y (1999) Speed sensorless field orientation control of the induction machine. IEEE Trans Ind Appl 29:175–180

    Article  Google Scholar 

  4. Shin M, Hyun D, Cho S, Choe S (2000) An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Trans Power Electron 15:312–317

    Article  Google Scholar 

  5. Shin M, Hyun D, Cho S, Choe S (2000) An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Trans Power Electron 15(2):312–318

    Article  Google Scholar 

  6. Karanayil B, Rahman MF, Grantham C (2004) An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive. IEEE Trans Power Electron 19(2):257–263

    Article  Google Scholar 

  7. Bose BK, Patel NR (1997) A programmable cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive. IEEE Trans Ind Electron 44:140–143

    Article  Google Scholar 

  8. Idris NRN, Yatim AHM (2002) An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Trans Ind Appl 38(1):110–116

    Article  Google Scholar 

  9. Hu J, Wu B (1998) New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans Power Electron 13:969–977

    Article  Google Scholar 

  10. Shauder C (1992) Adaptive speed identification scheme for vector control of induction motors without rotational transducers. IEEE Trans Ind Appl 28:1054–1061

    Article  Google Scholar 

  11. Sastry S, Modson M (1989) Adaptive control stability and convergence and robustness. Prentice Hall, USA

    Google Scholar 

  12. Peng PZ, Fukao T (1994) Robust speed identification for speed-sensorless vector control of induction motor. IEEE Trans Ind Appl 30:1234–1240

    Article  Google Scholar 

  13. Minami K, Velez-Reyez M, Elten D, Verghese GC, Filbert D (1991) Multi-stage speed and parameter estimation for induction machines. In: IEEE power electronics specialists conference, Boston

  14. Velez-Reyes M, Verghese GC (1992) Decomposed algorithms for speed and parameter estimation in induction machines. In: IFAC symposium on nonlinear control system design, Bordeaux

  15. Velez-Reyes M, Minami K, Erghese GC (1989) Recursive speed and parameter estimation for induction machines. In: IEEE/IAS ann. meet. conf. rec., San Diego

  16. Ha IJ, Lee SH (1996) An on-line identification method for both stator and rotor resistance of induction motors without rotational transducers. In: ISIE’96, Warsaw

  17. Yoo HS, Ha IJ (1996) A polar coordinate-oriented method of identifying rotor flux and speed of induction motors without rotational transducers. IEEE Trans Control Syst Technol 4:230–243

    Article  Google Scholar 

  18. Utkin VI (1993) Sliding mode control design principles and applications to electrical drives. IEEE Trans Ind Electron 40:23–36

    Article  Google Scholar 

  19. Utkin VI, Guldner JG, Sh J (2009) Sliding mode control in electromechanical systems. Taylor & Francis, London

    Book  Google Scholar 

  20. Oliveira JB, Araujo AD, Dias SM (2010) Controlling the speed of a three-phase induction motor using a simplified indirect adaptive sliding mode scheme. Control Eng Pract 18(6):577–584

  21. Kim H, Son J, Lee J (2011) A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans Ind Electron 58(9):4069–4077

    Article  Google Scholar 

  22. Qiao Z, Shi T, Wang Y, Yan Y, Xia C, He X (2013) New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(2):710–719

    Article  Google Scholar 

  23. Foo GHB, Rahman MF (2010) Direct torque control of an ipm-synchronous motor drive at very low speed using a sliding-mode stator flux observer. IEEE Trans Power Electron 25(4):933–942

    Article  Google Scholar 

  24. Benchaib A, Rachid A, Audrezet E, Tadjine M (1999) Real-time sliding mode observer and control of an induction motor. IEEE Trans Ind Electron 46:128

    Article  Google Scholar 

  25. Parasiliti R, Tursini M (1999) Adaptive sliding mode observer for speed sensorless control of induction motors. In: IEEE/IAS ann. meet. conf. rec

  26. Zheng Y, Fattah HAA, Loparo KA (2000) Non-linear adaptive sliding mode observer-controller scheme for induction motors. Int J Adapt Signal Proc 14:245

    Article  Google Scholar 

  27. Lin FJ, Wai RJ, Kuo RH, Liu DC (1998) A comparative study of sliding mode and model reference adaptive speed observers for induction motor drive. Electr Power Syst Res 44:163–174

    Article  Google Scholar 

  28. Rehman H, Derdiyok A, Guven MK, Xu L (2002) A new current model flux observer for wide speed range sensorless control of an induction machine. IEEE Trans Power Electron 17(6):1041–1048

    Article  Google Scholar 

  29. Derdiyok A, Guven MK, Rehman H, Inanc N, Xu L (2002) Design and implementation of a new sliding mode observer for speed sensorless control of induction machine. IEEE Trans Ind Electron 49(5):1177–1182

  30. Derdiyok A, Yan Z, Guven M, Utkin V (2001) A sliding mode speed and rotor time constant observer for induction machines. In: IECON’01, vol 2, pp 1400–1405

  31. Derdiyok A (2005) Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer. IEEE Trans Ind Electron 52(4):1170–1176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Başçi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derdiyok, A., Başçi, A. Speed estimation of an induction machine based on designed Lyapunov candidate functions. Electr Eng 98, 67–75 (2016). https://doi.org/10.1007/s00202-015-0345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-015-0345-2

Keywords

Navigation