Skip to main content

Advertisement

Log in

Robust speed regulation of indirect vector control induction motor using fuzzy logic controllers based on optimization algorithms

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Currently, in high-performance applications, the vector control (VC) scheme of induction motor (IM) is widely employed in industry. The VC scheme has significant features of decoupling torque and flux; also, its hardware implementation is easier. Conventionally, PID control schemes are frequently used for variable speed operation. However, the performance of the VC scheme is limited over a wide range of speed operation because of de-tuning caused by parameter uncertainties. To address the aforementioned challenging problem, adaptive and robust control strategies are mostly implemented. This paper presents various novel, adaptive, and robust control strategies, namely (a) fuzzy logic controller (FLC) based on Levenberg–Marquardt algorithm (LMA), (b) FLC based on steepest descent algorithm (SDA), (c) FLC based on Newton algorithm (NA), and (d) FLC based on Gauss–Newton algorithm (GNA) for the indirect vector control (IVC) three-phase IM. The focal motive is to accomplish fast dynamic response with fault-tolerant capability, load disturbance rejection qualities, insensitivity to the parameter uncertainties, robustness to speed variation, and to acquire maximum efficiency as well as torque. The \(d-q\) modeling of the IVC IM in the synchronous reference frame and space vector pulse width modulation (SVPWM) employed in inverter are designed in MATLAB/Simulink. Our work also presents critical, analytical, and comparative assessment of the proposed controllers with traditional tuned PI control strategy for the electrical faults perturbation, load disturbances, speed variations, and parameter uncertainties. Furthermore, the simulation results of the above-mentioned designed control strategies validated robust, smooth, and faster response with permissible overshoot, undershoot, settling time, and rise time for the IVC IM drive system, compared to prior works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(v_{sd},v_{sq}\) :

Synchronous frame (dq-axis) stator voltages.

\(i_{sd},i_{sq}\) :

Synchronous frame (dq-axis) stator currents.

\(\lambda _{sd},\lambda _{sq}\) :

Synchronous frame (dq-axis) stator fluxes.

\(v_{rd},v_{rq}\) :

Synchronous frame (dq-axis) rotor voltages.

\(i_{rd},i_{rq}\) :

Synchronous frame (dq-axis) rotor currents.

\(\lambda _{rd},\lambda _{rq}\) :

Synchronous frame (dq-axis) rotor fluxes.

\(L_{s},\, L_{r}\) :

Stator and rotor inductances, respectively.

\(R_{s},\, R_{r}\) :

Stator and rotor resistances, respectively.

\(L_{m}\) :

Mutual inductance.

\(\omega _{m}\) :

Mechanical rotor speed.

\(\omega _{e}\) :

Electrical synchronous speed.

\(\omega _{sl}\) :

Angular slip speed.

\(\omega _{d}\) :

Electrical synchronous speed.

\(\omega _{dA}\) :

Angular slip speed.

\(\theta _{r}\) :

Rotor angle.

\(\theta _{f}\) :

Field angle.

\(T_{L}\) :

Load torque.

\(T_{em}\) :

Electromagnetic torque.

\(J_{eq}\) :

Moment of inertia.

\(T_{r}\) :

Rotor time’s constant.

d(t):

Uncertainties.

\(\mu \) :

Combination coefficient.

\(\lambda \) :

Regularization constant.

\(\mu _{i}\) :

Membership function.

\(c_{i}(k)\) :

Center of membership function.

\(\sigma _{i}(k)\) :

Variance of membership function.

\(b_{i}(k)\) :

Output membership function.

\(J_{k}\) :

Jacobian matrix.

H :

Hessian matrix.

\(f_{m}\) :

Controller output

References

  1. El-Sousy FFM (2013) Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive. IEEE Trans Ind Inform 9:1922–1936

    Article  Google Scholar 

  2. Cabal-Yepez E, Fernandez-Jaramillo AA, Garcia-Perez A, Romero-Troncoso RJ, Lozano-Garcia JM (2015) Real-time condition monitoring on VSD-fed induction motors through statistical analysis and synchronous speed observation. Int Trans Electr Energy Syst 25:1657–1672

    Article  Google Scholar 

  3. Tosifian MH, Nazarzadeh J (2015) A detailed model of disk type linear induction machines. Int Trans Electr Energy Syst 25:1736–1747

    Article  Google Scholar 

  4. Uddin MN, Huang Zhi Rui, Hossain ABMS (2014) Development and implementation of a simplified self-tuned neuro-fuzzy-based IM drive. IEEE Trans Ind Appl 50:51–59

    Article  Google Scholar 

  5. Jisham LK, Thomas AAP (2013) A comparative study on scalar and vector control of Induction motor drives. In: Controls and communications (CCUBE), international conference on Circuits, pp 1–5

  6. Nikolic AB, Jeftenic BI (2006) Precise vector control of CSI fed induction motor drive. Eur Trans Electr Power 16(2):175–188

    Article  Google Scholar 

  7. Kan J, Zhang K, Wang Z (2015) Indirect vector control with simplified rotor resistance adaptation for induction machines. IEEE Trans Power Electron 8:1284–1294

    Article  Google Scholar 

  8. Hedjar R, Boucher P, Dumur D (2013) Robust nonlinear receding horizon control of induction motors original research article. Int J Electr Power Energy Syst 46:353–365

    Article  Google Scholar 

  9. Krishnan R (2003) Electric motor drives modeling, analysis and control. PHI Pvt. Ltd, New Delhi

    Google Scholar 

  10. Amezquita-Brooks L, Liceaga-Castro J (2014) Speed and position controllers using indirect field-oriented control: a classical control approach. IEEE Trans Ind Electron 61(4):1928–1943

    Article  Google Scholar 

  11. Abdelsalam AK, Masoud MI, Hamad MS, Williams BW (2012) Modified indirect vector control technique for current-source induction motor drive. IEEE Trans Ind Appl 48(6):2433–2442

    Article  Google Scholar 

  12. Paladugu A, Chowdhury BH (2007) Sensorless control of inverter-fed induction motor drives. Electr Power Syst Res 77(6):619–629

    Article  Google Scholar 

  13. Guzinski J, Abu-Rub H (2013) Speed sensorless induction motor drive with predictive current controller. IEEE Trans Ind Electron 60(2):272–282

    Article  MATH  Google Scholar 

  14. Ravi Teja AV, Chakraborty C, Maiti S, Hori Y (2012) A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans Ind Electron 59(9):3757–3767

    Article  Google Scholar 

  15. Uddin MN, Nam SW (2009) Development and implementation of a nonlinear-controller-based IM drive incorporating iron loss with parameter uncertainties. IEEE Trans Ind Electron 56(4):1263–1272

    Article  Google Scholar 

  16. Liaw CM, Lin YM, Chao KH (2001) A VSS speed controller with model reference response for induction motor drive. IEEE Trans Ind Electron 48(6):1136–1147

    Article  Google Scholar 

  17. Qiao Z, Shi T, Wang Y, Yan Y, Xia C, He X (2013) New sliding mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(2):710–719

    Article  Google Scholar 

  18. Curkovic M, Jezernik K, Horvat R (2013) FPGA-based predictive sliding mode controller of a three-phase inverter. IEEE Trans Ind Electron 60(2):637–644

    Article  Google Scholar 

  19. Rubaai A, Young P (2011) EKF-based PI-/PD-like fuzzy-neural-network controller for brushless drives. IEEE Trans Ind Appl 47(6):2391–2401

    Article  Google Scholar 

  20. Barambones O, Alkorta P (2014) Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans Ind Electron 61(12):6556–6565

    Article  Google Scholar 

  21. Quoc L Viet, Ho C Han, Jin-Woo J (2012) Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer. IEEE Trans Power Electron 27(4):1530–1539

    Google Scholar 

  22. Rubaai A, Young P (2011) Hardware/software implementation of PI/PD-like fuzzy controller for high performance motor drives. IEEE Ind Appl Soc Annu Meet 2:1–7

    Google Scholar 

  23. Gdaim S, Mtibaa A, Mimouni MF (2016) Design and experimental implementation of DTC of an induction machine based on fuzzy logic control on FPGA. IEEE Trans Fuzzy Syst 23(4):644–655

    Google Scholar 

  24. Wai RJ (2007) Fuzzy sliding mode control using adaptive tuning technique. IEEE Trans Ind Electron 54(1):586–594

    Article  Google Scholar 

  25. Zerikat M, Mechernene A, Chekroun S (2011) High-performance sensorless vector control of induction motor drives using artificial intelligent technique. Eur Trans Electr Power 21:787–800

    Article  Google Scholar 

  26. El-Sousy FFM, Salem MM (2004) Simple neuro-controllers for field oriented induction motor servo drive system. J Power Electron 4(1):28–38

    Google Scholar 

  27. Wai RJ (2001) Hybrid control for speed sensorless induction motor drive. IEEE Trans Fuzzy Syst 9(1):116–138

    Article  Google Scholar 

  28. Wai RJ, Lin HH, Lin FJ (2000) Hybrid controller using fuzzy neural networks for identification and control of induction servo motor drive. Neurocomputing 35:91–112

    Article  MATH  Google Scholar 

  29. Su K-H, Kung C-C (2005) Supervisory enhanced genetic algorithm controller design and its application to decoupling induction motor drive. Proc IEE Electr Power Appl 152(4):1015–1026

    Article  Google Scholar 

  30. Maiti S, Chakraborty C, Hori Y, Ta MC (2008) Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans Ind Electron 55(2):594–601

    Article  Google Scholar 

  31. Basilio JC, Silva JA, Rolim LGB, Moreira MV (2010) \(H_{\propto }\) design of rotor flux-oriented current-controlled induction motor drives: speed control, noise attenuation and stability robustness. IET Control Theory Appl 3:2491–2505

    Article  Google Scholar 

  32. Attaianese C, Timasso G (2001) \(H_{\propto }\) control of induction motor. Proc IEE Electr Power Appl 148(4):272–278

    Article  Google Scholar 

  33. Lekhchine S, Bahi T, Soufi Y (2014) Indirect rotor field oriented control based on fuzzy logic controlled double star induction machine. Int J Electr Power Energy Syst 57:206–211

  34. Masiala M, Vafakhah B, Salmon J, Knight MA (2008) Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive. IEEE Trans Ind Appl 44(6):1732–1740

    Article  Google Scholar 

  35. Zahraoui Y, Bennassar A, Akherraz M, Essalmi A (2015) Indirect vector control of induction motor using an extended Kalman observer and fuzzy logic controllers. In: 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp 1–6

  36. Yu H, Wilamowski BM (2011) “Levenberg–Marquardt training,” in the industrial electronics handbook, vol. 5-intelligent systems, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  37. Quang NP, Dittrich JA (2008) Vector control of three-phase AC machines, system development in the practice. Springer, Berlin

  38. Mohan N (2001) Advance electric drives analysis, control and modeling using simulink. MNPERE, PHI Pvt. Ltd, New Delhi

  39. Potamianos PG, Kappatou J, Safacas AN, Mitronikas ED, Michalatos P (2015) Modeling of a matrix converter fed induction machine drive system for diagnostic purposes. Int Trans Electr Energy Syst 25:405–418

    Article  Google Scholar 

  40. Ertan HB, Üçtug MY, Colyer R, Consoli A (2013) Modern electrical drives. Springer, Berlin

    Google Scholar 

  41. Huang YL, Lou HH, Gong JP, Edgar TF (2000) Fuzzy model predictive control. IEEE Trans Fuzzy Syst 8(6):665–678

    Article  Google Scholar 

  42. Wang HO, Tanaka K, Griffin MF (2002) An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans Fuzzy Syst 4(1):14–23

    Article  Google Scholar 

  43. Wilamowski BM, Yu H (2010) Improved computation for Levenberg Marquardt training. IEEE Trans Neural Netw 21:930–937

    Article  Google Scholar 

  44. Yu H, Wilamowski BM (2011) Levenberg–Marquardt training. The industrial electronics handbook, pp (12-1)–(12-16). www.eng.auburn.edu

  45. Ch’ng SI, Seng KP, Ang L-M (2012) Adaptive momentum Levenberg–Marquardt RBF for face recognition. In: IEEE international conference on circuits and systems (ICCAS), pp 126–132

  46. Levenberg K (1994) A method for the solution of certain problems in least square. Q Appl Math 2:164–168

    Article  MathSciNet  MATH  Google Scholar 

  47. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. Soc Ind Appl Math J Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeb K, Ali Z, Saleem K, Uddin W, Christofides N (2016) Indirect field-oriented control of induction motor drive based on adaptive fuzzy logic control. Electr Eng Springer 1–13. doi:10.1007/s00202-016-0447-5

  49. Khan Laiq, Anjum S, Badar R (2010) Standard fuzzy model identification using gradient methods. World Appl Sci J 8(1):01–09

    Google Scholar 

  50. Guillaume P, Pintelon R (1996) A Gauss Newton like optimization algorithm for weighted nonlinear least squares problems. IEEE Trans Signal Process 44(8):2222–2228

    Article  Google Scholar 

  51. Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear least squares problems, 2nd edn. Informatics and Mathematical Modelling, Technical University of Denmark, DTU pp 5–24

  52. Abbasbandy S (2006) Newton_s method for solving a system of fuzzy nonlinear equations. Appl Math Comput 175:1189–1199

    MathSciNet  MATH  Google Scholar 

  53. Soud HE, Mailef MA, Abdulmalek SJ (2013) Indirect field oriented control of induction motor (IM) drive using fuzzy logic controller (FLC). In: International conference on industrial electronics and applications, pp 1914–1917

  54. Arun RK, Febin Daya JL (2013) A novel self-tuning fuzzy based PID controller for speed control of induction motor drive. In: International conference on control communication and computing (ICCC), pp 62–67, 2013

  55. Abhiram T, Prasad PVN (2014) Type-2 fuzzy logic based controllers for indirect vector controlled SVPWM based two-level inverter fed induction motor drive. In: 6th IEEE international conference on power electronics (IICPE), pp 1–6

  56. Sanjeevikumar P et al (2015) Wavelet transform with fuzzy tuning based indirect field oriented speed control of three-phase induction motor drive. In: International conference on electrical drives and power electronics (EDPE), pp 111–116

  57. Zerikat M, Mechernene A, Chekhroun S (2016) Adaptive vector control of induction motor based on a fuzzy self-tuning IP speed controller. In: 5th IEEE international conference on systems and control (ICSC), pp 97–102

  58. Zaky MS, Metwaly MK (2017) A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers. IEEE Trans Ind Electron 32(5):3741–3753

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Zeb.

Appendices

Appendix

Machine nominal parameters

Rated power 3 HP/2.4 KW, line voltage 460 V (L-L, rms), phases 3, number of poles 4, system frequency 60 Hz, full-load slip 1.72%, stator resistance \(1.77 \,\Omega \), rotor resistance \(1.34\,\Omega \), stator leakage resistance \(5.25\,\Omega \), rotor leakage resistance \(4.57\,\Omega \), mutual inductance \(139\,\Omega \), moment of inertia \(70\, \mathrm{kg\,m^{2}}\), rated torque 12.6444, full-load current 4 A, full-load efficiency 88.5%, power factor 80%, full-load speed 1750 rpm, iron losses 78 W, and mechanical (friction\(+\)windage) losses 24 W (Table 4).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeb, K., Uddin, W., Haider, A. et al. Robust speed regulation of indirect vector control induction motor using fuzzy logic controllers based on optimization algorithms. Electr Eng 100, 787–802 (2018). https://doi.org/10.1007/s00202-017-0553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0553-z

Keywords

Navigation