Electrical Engineering

, Volume 100, Issue 2, pp 787–802 | Cite as

Robust speed regulation of indirect vector control induction motor using fuzzy logic controllers based on optimization algorithms

  • Kamran Zeb
  • Waqar Uddin
  • Aun Haider
  • S. Belal
  • C. A. Mehmood
  • M. A. Khan
  • H. J. Kim
Original Paper
  • 141 Downloads

Abstract

Currently, in high-performance applications, the vector control (VC) scheme of induction motor (IM) is widely employed in industry. The VC scheme has significant features of decoupling torque and flux; also, its hardware implementation is easier. Conventionally, PID control schemes are frequently used for variable speed operation. However, the performance of the VC scheme is limited over a wide range of speed operation because of de-tuning caused by parameter uncertainties. To address the aforementioned challenging problem, adaptive and robust control strategies are mostly implemented. This paper presents various novel, adaptive, and robust control strategies, namely (a) fuzzy logic controller (FLC) based on Levenberg–Marquardt algorithm (LMA), (b) FLC based on steepest descent algorithm (SDA), (c) FLC based on Newton algorithm (NA), and (d) FLC based on Gauss–Newton algorithm (GNA) for the indirect vector control (IVC) three-phase IM. The focal motive is to accomplish fast dynamic response with fault-tolerant capability, load disturbance rejection qualities, insensitivity to the parameter uncertainties, robustness to speed variation, and to acquire maximum efficiency as well as torque. The \(d-q\) modeling of the IVC IM in the synchronous reference frame and space vector pulse width modulation (SVPWM) employed in inverter are designed in MATLAB/Simulink. Our work also presents critical, analytical, and comparative assessment of the proposed controllers with traditional tuned PI control strategy for the electrical faults perturbation, load disturbances, speed variations, and parameter uncertainties. Furthermore, the simulation results of the above-mentioned designed control strategies validated robust, smooth, and faster response with permissible overshoot, undershoot, settling time, and rise time for the IVC IM drive system, compared to prior works.

Keywords

Induction motor (IM) Indirect vector control (IVC) Space vector pulse width modulation (SVPWM) Fuzzy logic controller (FLC) Steepest Descent (SD) Levenberg–Marquardt (LM) Newton Gauss–Newton (GN) 

List of symbols

\(v_{sd},v_{sq}\)

Synchronous frame (dq-axis) stator voltages.

\(i_{sd},i_{sq}\)

Synchronous frame (dq-axis) stator currents.

\(\lambda _{sd},\lambda _{sq}\)

Synchronous frame (dq-axis) stator fluxes.

\(v_{rd},v_{rq}\)

Synchronous frame (dq-axis) rotor voltages.

\(i_{rd},i_{rq}\)

Synchronous frame (dq-axis) rotor currents.

\(\lambda _{rd},\lambda _{rq}\)

Synchronous frame (dq-axis) rotor fluxes.

\(L_{s},\, L_{r}\)

Stator and rotor inductances, respectively.

\(R_{s},\, R_{r}\)

Stator and rotor resistances, respectively.

\(L_{m}\)

Mutual inductance.

\(\omega _{m}\)

Mechanical rotor speed.

\(\omega _{e}\)

Electrical synchronous speed.

\(\omega _{sl}\)

Angular slip speed.

\(\omega _{d}\)

Electrical synchronous speed.

\(\omega _{dA}\)

Angular slip speed.

\(\theta _{r}\)

Rotor angle.

\(\theta _{f}\)

Field angle.

\(T_{L}\)

Load torque.

\(T_{em}\)

Electromagnetic torque.

\(J_{eq}\)

Moment of inertia.

\(T_{r}\)

Rotor time’s constant.

d(t)

Uncertainties.

\(\mu \)

Combination coefficient.

\(\lambda \)

Regularization constant.

\(\mu _{i}\)

Membership function.

\(c_{i}(k)\)

Center of membership function.

\(\sigma _{i}(k)\)

Variance of membership function.

\(b_{i}(k)\)

Output membership function.

\(J_{k}\)

Jacobian matrix.

H

Hessian matrix.

\(f_{m}\)

Controller output

References

  1. 1.
    El-Sousy FFM (2013) Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive. IEEE Trans Ind Inform 9:1922–1936CrossRefGoogle Scholar
  2. 2.
    Cabal-Yepez E, Fernandez-Jaramillo AA, Garcia-Perez A, Romero-Troncoso RJ, Lozano-Garcia JM (2015) Real-time condition monitoring on VSD-fed induction motors through statistical analysis and synchronous speed observation. Int Trans Electr Energy Syst 25:1657–1672CrossRefGoogle Scholar
  3. 3.
    Tosifian MH, Nazarzadeh J (2015) A detailed model of disk type linear induction machines. Int Trans Electr Energy Syst 25:1736–1747CrossRefGoogle Scholar
  4. 4.
    Uddin MN, Huang Zhi Rui, Hossain ABMS (2014) Development and implementation of a simplified self-tuned neuro-fuzzy-based IM drive. IEEE Trans Ind Appl 50:51–59CrossRefGoogle Scholar
  5. 5.
    Jisham LK, Thomas AAP (2013) A comparative study on scalar and vector control of Induction motor drives. In: Controls and communications (CCUBE), international conference on Circuits, pp 1–5Google Scholar
  6. 6.
    Nikolic AB, Jeftenic BI (2006) Precise vector control of CSI fed induction motor drive. Eur Trans Electr Power 16(2):175–188CrossRefGoogle Scholar
  7. 7.
    Kan J, Zhang K, Wang Z (2015) Indirect vector control with simplified rotor resistance adaptation for induction machines. IEEE Trans Power Electron 8:1284–1294CrossRefGoogle Scholar
  8. 8.
    Hedjar R, Boucher P, Dumur D (2013) Robust nonlinear receding horizon control of induction motors original research article. Int J Electr Power Energy Syst 46:353–365CrossRefGoogle Scholar
  9. 9.
    Krishnan R (2003) Electric motor drives modeling, analysis and control. PHI Pvt. Ltd, New DelhiGoogle Scholar
  10. 10.
    Amezquita-Brooks L, Liceaga-Castro J (2014) Speed and position controllers using indirect field-oriented control: a classical control approach. IEEE Trans Ind Electron 61(4):1928–1943CrossRefGoogle Scholar
  11. 11.
    Abdelsalam AK, Masoud MI, Hamad MS, Williams BW (2012) Modified indirect vector control technique for current-source induction motor drive. IEEE Trans Ind Appl 48(6):2433–2442CrossRefGoogle Scholar
  12. 12.
    Paladugu A, Chowdhury BH (2007) Sensorless control of inverter-fed induction motor drives. Electr Power Syst Res 77(6):619–629CrossRefGoogle Scholar
  13. 13.
    Guzinski J, Abu-Rub H (2013) Speed sensorless induction motor drive with predictive current controller. IEEE Trans Ind Electron 60(2):272–282CrossRefMATHGoogle Scholar
  14. 14.
    Ravi Teja AV, Chakraborty C, Maiti S, Hori Y (2012) A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans Ind Electron 59(9):3757–3767CrossRefGoogle Scholar
  15. 15.
    Uddin MN, Nam SW (2009) Development and implementation of a nonlinear-controller-based IM drive incorporating iron loss with parameter uncertainties. IEEE Trans Ind Electron 56(4):1263–1272CrossRefGoogle Scholar
  16. 16.
    Liaw CM, Lin YM, Chao KH (2001) A VSS speed controller with model reference response for induction motor drive. IEEE Trans Ind Electron 48(6):1136–1147CrossRefGoogle Scholar
  17. 17.
    Qiao Z, Shi T, Wang Y, Yan Y, Xia C, He X (2013) New sliding mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans Ind Electron 60(2):710–719CrossRefGoogle Scholar
  18. 18.
    Curkovic M, Jezernik K, Horvat R (2013) FPGA-based predictive sliding mode controller of a three-phase inverter. IEEE Trans Ind Electron 60(2):637–644CrossRefGoogle Scholar
  19. 19.
    Rubaai A, Young P (2011) EKF-based PI-/PD-like fuzzy-neural-network controller for brushless drives. IEEE Trans Ind Appl 47(6):2391–2401CrossRefGoogle Scholar
  20. 20.
    Barambones O, Alkorta P (2014) Position control of the induction motor using an adaptive sliding-mode controller and observers. IEEE Trans Ind Electron 61(12):6556–6565CrossRefGoogle Scholar
  21. 21.
    Quoc L Viet, Ho C Han, Jin-Woo J (2012) Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer. IEEE Trans Power Electron 27(4):1530–1539Google Scholar
  22. 22.
    Rubaai A, Young P (2011) Hardware/software implementation of PI/PD-like fuzzy controller for high performance motor drives. IEEE Ind Appl Soc Annu Meet 2:1–7Google Scholar
  23. 23.
    Gdaim S, Mtibaa A, Mimouni MF (2016) Design and experimental implementation of DTC of an induction machine based on fuzzy logic control on FPGA. IEEE Trans Fuzzy Syst 23(4):644–655Google Scholar
  24. 24.
    Wai RJ (2007) Fuzzy sliding mode control using adaptive tuning technique. IEEE Trans Ind Electron 54(1):586–594CrossRefGoogle Scholar
  25. 25.
    Zerikat M, Mechernene A, Chekroun S (2011) High-performance sensorless vector control of induction motor drives using artificial intelligent technique. Eur Trans Electr Power 21:787–800CrossRefGoogle Scholar
  26. 26.
    El-Sousy FFM, Salem MM (2004) Simple neuro-controllers for field oriented induction motor servo drive system. J Power Electron 4(1):28–38Google Scholar
  27. 27.
    Wai RJ (2001) Hybrid control for speed sensorless induction motor drive. IEEE Trans Fuzzy Syst 9(1):116–138CrossRefGoogle Scholar
  28. 28.
    Wai RJ, Lin HH, Lin FJ (2000) Hybrid controller using fuzzy neural networks for identification and control of induction servo motor drive. Neurocomputing 35:91–112CrossRefMATHGoogle Scholar
  29. 29.
    Su K-H, Kung C-C (2005) Supervisory enhanced genetic algorithm controller design and its application to decoupling induction motor drive. Proc IEE Electr Power Appl 152(4):1015–1026CrossRefGoogle Scholar
  30. 30.
    Maiti S, Chakraborty C, Hori Y, Ta MC (2008) Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans Ind Electron 55(2):594–601CrossRefGoogle Scholar
  31. 31.
    Basilio JC, Silva JA, Rolim LGB, Moreira MV (2010) \(H_{\propto }\) design of rotor flux-oriented current-controlled induction motor drives: speed control, noise attenuation and stability robustness. IET Control Theory Appl 3:2491–2505CrossRefGoogle Scholar
  32. 32.
    Attaianese C, Timasso G (2001) \(H_{\propto }\) control of induction motor. Proc IEE Electr Power Appl 148(4):272–278CrossRefGoogle Scholar
  33. 33.
    Lekhchine S, Bahi T, Soufi Y (2014) Indirect rotor field oriented control based on fuzzy logic controlled double star induction machine. Int J Electr Power Energy Syst 57:206–211Google Scholar
  34. 34.
    Masiala M, Vafakhah B, Salmon J, Knight MA (2008) Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive. IEEE Trans Ind Appl 44(6):1732–1740CrossRefGoogle Scholar
  35. 35.
    Zahraoui Y, Bennassar A, Akherraz M, Essalmi A (2015) Indirect vector control of induction motor using an extended Kalman observer and fuzzy logic controllers. In: 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp 1–6Google Scholar
  36. 36.
    Yu H, Wilamowski BM (2011) “Levenberg–Marquardt training,” in the industrial electronics handbook, vol. 5-intelligent systems, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  37. 37.
    Quang NP, Dittrich JA (2008) Vector control of three-phase AC machines, system development in the practice. Springer, BerlinGoogle Scholar
  38. 38.
    Mohan N (2001) Advance electric drives analysis, control and modeling using simulink. MNPERE, PHI Pvt. Ltd, New DelhiGoogle Scholar
  39. 39.
    Potamianos PG, Kappatou J, Safacas AN, Mitronikas ED, Michalatos P (2015) Modeling of a matrix converter fed induction machine drive system for diagnostic purposes. Int Trans Electr Energy Syst 25:405–418CrossRefGoogle Scholar
  40. 40.
    Ertan HB, Üçtug MY, Colyer R, Consoli A (2013) Modern electrical drives. Springer, BerlinGoogle Scholar
  41. 41.
    Huang YL, Lou HH, Gong JP, Edgar TF (2000) Fuzzy model predictive control. IEEE Trans Fuzzy Syst 8(6):665–678CrossRefGoogle Scholar
  42. 42.
    Wang HO, Tanaka K, Griffin MF (2002) An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans Fuzzy Syst 4(1):14–23CrossRefGoogle Scholar
  43. 43.
    Wilamowski BM, Yu H (2010) Improved computation for Levenberg Marquardt training. IEEE Trans Neural Netw 21:930–937CrossRefGoogle Scholar
  44. 44.
    Yu H, Wilamowski BM (2011) Levenberg–Marquardt training. The industrial electronics handbook, pp (12-1)–(12-16). www.eng.auburn.edu
  45. 45.
    Ch’ng SI, Seng KP, Ang L-M (2012) Adaptive momentum Levenberg–Marquardt RBF for face recognition. In: IEEE international conference on circuits and systems (ICCAS), pp 126–132Google Scholar
  46. 46.
    Levenberg K (1994) A method for the solution of certain problems in least square. Q Appl Math 2:164–168MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. Soc Ind Appl Math J Appl Math 11:431–441MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Zeb K, Ali Z, Saleem K, Uddin W, Christofides N (2016) Indirect field-oriented control of induction motor drive based on adaptive fuzzy logic control. Electr Eng Springer 1–13. doi: 10.1007/s00202-016-0447-5
  49. 49.
    Khan Laiq, Anjum S, Badar R (2010) Standard fuzzy model identification using gradient methods. World Appl Sci J 8(1):01–09Google Scholar
  50. 50.
    Guillaume P, Pintelon R (1996) A Gauss Newton like optimization algorithm for weighted nonlinear least squares problems. IEEE Trans Signal Process 44(8):2222–2228CrossRefGoogle Scholar
  51. 51.
    Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear least squares problems, 2nd edn. Informatics and Mathematical Modelling, Technical University of Denmark, DTU pp 5–24Google Scholar
  52. 52.
    Abbasbandy S (2006) Newton_s method for solving a system of fuzzy nonlinear equations. Appl Math Comput 175:1189–1199MathSciNetMATHGoogle Scholar
  53. 53.
    Soud HE, Mailef MA, Abdulmalek SJ (2013) Indirect field oriented control of induction motor (IM) drive using fuzzy logic controller (FLC). In: International conference on industrial electronics and applications, pp 1914–1917Google Scholar
  54. 54.
    Arun RK, Febin Daya JL (2013) A novel self-tuning fuzzy based PID controller for speed control of induction motor drive. In: International conference on control communication and computing (ICCC), pp 62–67, 2013Google Scholar
  55. 55.
    Abhiram T, Prasad PVN (2014) Type-2 fuzzy logic based controllers for indirect vector controlled SVPWM based two-level inverter fed induction motor drive. In: 6th IEEE international conference on power electronics (IICPE), pp 1–6Google Scholar
  56. 56.
    Sanjeevikumar P et al (2015) Wavelet transform with fuzzy tuning based indirect field oriented speed control of three-phase induction motor drive. In: International conference on electrical drives and power electronics (EDPE), pp 111–116Google Scholar
  57. 57.
    Zerikat M, Mechernene A, Chekhroun S (2016) Adaptive vector control of induction motor based on a fuzzy self-tuning IP speed controller. In: 5th IEEE international conference on systems and control (ICSC), pp 97–102Google Scholar
  58. 58.
    Zaky MS, Metwaly MK (2017) A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI controllers. IEEE Trans Ind Electron 32(5):3741–3753Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Management and TechnologySialkotPakistan
  2. 2.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyAbbottabadPakistan
  3. 3.School of Electrical EngineeringPusan National UniversityPusanSouth Korea

Personalised recommendations