Skip to main content

Advertisement

Log in

Circulating MiR-21 expression is upregulated after 30 days of head-down tilt bed rest

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Relative expression of miR-21-5p in serum was upregulated in response to 30 days of bed rest, and miRNA fold changes were positively associated with serum calcium changes.

Introduction

Circulating miRNAs (c-miRNAs) have potential as biomarkers of cellular activity, and they may play a role in cell-to-cell communication. The purpose of this study was to examine c-miRNA and bone marker responses to a 30-day six-degree head-down bed rest protocol at an ambient 0.5% CO2.

Methods

Eleven participants (6 males/5 females, 25–50 years) had fasting blood draws taken 3 days before and immediately after completing the 30-day bed rest protocol at the Institute for Aerospace Medicine in Germany. Serum relative expression of miRNAs associated with bone function (miR-21-5p, -100-5p, -125b-5p, -126-3p) were analyzed using qPCR, and serum bone markers were quantitated using ELISA.

Results

Serum bone markers, sclerostin, and calcium significantly increased (p ≤ 0.036), and total hip aBMD significantly decreased (p = 0.003) post bed rest. Serum miR-21-5p relative expression was significantly upregulated (p = 0.018) post bed rest. Fold changes in miR-126-3p (r = 0.82, p = 0.002) and miR-21-5p (r = 0.62, p = 0.042) were positively correlated with absolute change in serum calcium. There were no sex differences in miRNA responses; women had greater percent increases in TRAP5b (37.3% vs. 16.9% p = 0.021) and greater percent decreases in total hip aBMD (− 2.15% vs. − 0.69%, p = 0.034) than men.

Conclusion

c-miR-21-5p has potential as a biomarker of bone resorption and bone loss in an unloading condition. The upregulation of miR-21-5p may reflect an increase in osteoclast activity after bed rest, which is corroborated by the increase in TRAP5b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used to support the findings of this study are restricted by the NASA IRB in order to protect participant privacy. Data may be available in aggregate form from the corresponding author upon request.

Abbreviations

aBMD:

areal bone mineral density

BDC-14:

baseline data collection 14 days prior to bed rest

BDC-3:

baseline data collection 3 days prior to bed rest

BFLBM:

bone free lean body mass

BMC:

bone mineral content

BMD:

bone mineral density

BMP:

Bone Morphogenetic Protein

BMPR/BMPR2 BMP:

Receptor/BMP Receptor 2

Bone ALP:

Bone-specific Alkaline Phosphatase

cDNA:

Complementary Deoxyribonucleic Acid

Cel-miR-39-3p:

Caenorhabditis elegans microRNA-39-3p

c-miRNA:

circulating microRNA

CO2 :

carbon dioxide

Cq:

Quantification Cycle

ELISA:

Enzyme-linked Immunosorbent Assay

FM:

fat mass

MAPK:

Mitogen-Activated Protein Kinase

miRNA:

microRNA

MMP13:

Matrix Metalloproteinase 13

OSX:

Osterix

PDCD4:

Programmed Cell Death Protein 4

P1NP:

N-terminal propeptide of type 1 procollagen

PTH:

Parathyroid Hormone

qPCR:

Quantitative Real-Time Polymerase Chain Reaction

R+0:

recovery last day of bed rest

R+11:

recovery 11 days post bed rest

RNA:

Ribonucleic Acid

RUNX2:

Runt-Related Transcription Factor 2

SMAD1:

Small Mothers Against Decapentaplegic 1

SMAD7:

Small Mothers Against Decapentaplegic 7

TGF-β:

Transforming Growth Factor-Beta

TRAP5b:

Tartrate-resistant acid phosphatase 5b

UniSp4:

Uni-Spike-In 4

25-OH:

25-hydroxy Vitamin D

References

  1. LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration spaceflight. J Musculoskelet Neuronal Interact 1:157–160

    CAS  PubMed  Google Scholar 

  2. Sibonga JD (2013) Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep 11:92–98. https://doi.org/10.1007/s11914-013-0136-5

    Article  PubMed  Google Scholar 

  3. Yavropoulou MP, Anastasilakis AD, Makras P, Tsalikakis DG, Grammatiki M, Yovos JG (2017) Expression of microRNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur J Endocrinol 176:169–176. https://doi.org/10.1530/EJE-16-0583

    Article  CAS  PubMed  Google Scholar 

  4. Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ (2016) The impact of microgravity on bone in humans. Bone 87:44–56. https://doi.org/10.1016/j.bone.2015.12.057

    Article  PubMed  Google Scholar 

  5. Bellavia D, De Luca A, Carina V, Costa V, Raimondi L, Salamanna F, Alessandro R, Fini M, Giavaresi G (2019) Deregulated miRNAs in bone health: epigenetic roles in osteoporosis. Bone 122:52–57. https://doi.org/10.1016/j.bone.2019.02.0135

    Article  CAS  PubMed  Google Scholar 

  6. Cheng VK, Au PC, Tan KC, Cheung CL. (2019) MicroRNA and human bone health. JBMR Plus 3:2–13 Published 2018 Nov 5. doi:https://doi.org/10.1002/jbm4.10115

  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases – complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95. https://doi.org/10.1016/j.mce.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  9. Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718–1728. https://doi.org/10.1002/jbmr.2175

    Article  CAS  PubMed  Google Scholar 

  10. Kelch S, Balmayor ER, Seeliger C, Vester H, Kirschke JS, van Griensyen M (2017) miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci Rep 7:15861. Published 2017 Nov 20. doi:https://doi.org/10.1038/s41598-017-16113-x

  11. Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R (2018) Bone-related circulating microRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci Rep 8:4867. Published 2018 Mar 20. doi:https://doi.org/10.1038/s41598-018-22844-2

  12. Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43–51. https://doi.org/10.1016/j.bone.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  13. Alsani S, Abhari A, Sakhinia E, Sanajou D, Rajabi H, Rahimzadeh S (2019) Interplay between microRNAs and Wnt, transforming growth factor-β, and bone morphogenic protein signaling pathways promote osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol 234:8082–8093. https://doi.org/10.1002/jcp.27582

    Article  CAS  Google Scholar 

  14. Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, Lei L, Chen X, Tickner J, Xu J, Zou J (2017) Mechanical stress regulates bone metabolism through microRNAs. J Cell Physiol 232:1239–1245. https://doi.org/10.1002/jcp.25688

    Article  CAS  PubMed  Google Scholar 

  15. Sapp RM, Shill DD, Roth SM, Hagberg JM. (2017) Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol (1985) 122:702–717. doi:https://doi.org/10.1152/japplphysiol.00982.2016

  16. Cui S, Sun B, Yin X, Guo X, Chao D, Zhang C, Zhang C, Chen X, Ma J. (2017) Time-course responses of circulating microRNAs to three resistance training protocols in healthy young men. Sci Rep 7(1):2203 Published 2017 May 19. doi:https://doi.org/10.1038/s41598-017-02294-y

  17. Margolis LM, Lessard SJ, Ezzyat Y, Fielding RA, Rivas DA (2017) Circulating microRNA are predictive of aging and acute adaptive response to resistance exercise in men. J Gerontol A Biol Sci Med Sci 72:1319–1326. https://doi.org/10.1093/gerona/glw243

    Article  CAS  PubMed  Google Scholar 

  18. Valenti MT, Deiana M, Cheri S, Dotta M, Zamboni F, Gabbiani D, Schena F, Carbonare LD, Mottes M. (2019) Physical exercise modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p expression in progenitor cells promoting osteogenesis, Cells 8:742. Published 2019 Jul 19. doi:https://doi.org/10.3390/cells8070742

  19. Ringholm S, Biensø RS, Kiilerich K, Guadalup-Grau A, Aachmann-Andersen NJ, Saltin B, Plomgaard P, Lundby C, Wojtaszewski JFP, Calbet JA, Pilegaard H (2011) Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Am J Physiol Endocrinol Metab 301:E649–E658. https://doi.org/10.1152/ajpendo.00230.2011

    Article  CAS  PubMed  Google Scholar 

  20. Ling S, Zhong G, Sun W, Liang F, Wu F, Li H, Li Y, Zhao D, Song J, Jim X, Wu X, Song H, Li Q, Li Y, Chen S, Xiong J, Li Y (2017) Circulating micrornas correlated with bone loss induced by 45 days of bed rest. Front Physiol 8:69. Published 2017 Feb 14. doi:https://doi.org/10.3389/fphys.2017.00069

  21. Ade CJ, Bemben DA (2019) Differential MicroRNA expression following head-down tilt bed rest: implications for cardiovascular responses to microgravity. Physiol Rep 7:e14061. https://doi.org/10.14814/phy2.14061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  23. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Teilum MW, Dahlsveen IK (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1–S6. https://doi.org/10.1016/j.ymeth.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  24. Vincent WJ, Weir JP (2012) Statistics in kinesiology. Human Kinetics, Champaign IL

    Google Scholar 

  25. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, Rosen HN, Weber DR, Zemel BS, Shepherd JA (2019) Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, peri-prosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom 22(4):453–471. https://doi.org/10.1016/j.jocd.2019.07.001

    Article  PubMed  Google Scholar 

  26. Morgan JL, Heer M, Hargens AR, Macias BR, Hudson EK, Shackelford LC, Zwart SR, Smith SM (2014) Sex-specific responses of bone metabolism and renal stone risk during bed rest. Physiol Rep. 2:e12119. Published 2014 Aug 7. doi:https://doi.org/10.14814/phy2.12119

  27. Sugatani T, Vacher J, Hruska KA (2011) A microRNA expression signature of osteoclastogenesis. Blood. 117:3648–3657. https://doi.org/10.1182/blood-2010-10-311415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu CH, Sui BD, Du FY, Shuai Y, Zheng CX, Zhao P, Yu XR, Jin Y (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191. Published 2017 Feb 27. doi:https://doi.org/10.1038/srep43191

  29. Zhao Z, Li X, Zou D, Lian Y, Tian S, Dou Z (2019) Expression of microRNA-21 in osteoporotic patients and its involvement in the regulation of osteogenic differentiation. Exp Ther Med 17:709–714. https://doi.org/10.3892/etm.2018.6998

    Article  CAS  PubMed  Google Scholar 

  30. Armbrecht G, Belavý DL, Gast U, Bongrazio M, Touby F, Beller G, Roth HJ, Perschel FH, Rittweger J, Felsenberg D (2010) Resistive vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical markers of bone metabolism. Osteoporos Int 21:597–607. https://doi.org/10.1007/s00198-009-0985-z

    Article  CAS  PubMed  Google Scholar 

  31. Beller G, Belavý DL, Sun L, Armbrecht G, Alexandre C, Felsenberg D (2011) WISE-2005: bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 49:858–866. https://doi.org/10.1016/j.bone.2011.06.021

    Article  PubMed  Google Scholar 

  32. Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ (2015) Serum circulating MicroRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int 97:495–505. https://doi.org/10.1007/s00223-015-0036-z

    Article  CAS  PubMed  Google Scholar 

  33. Lang T, Van Loon JJWA, Bloomfield S, Vico L, Chopard A, Rittweger J, Kyparos A, Blottner D, Vuori I, Gerzer R, Cavanagh PR (2017) Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity 3:8 Published 2017 Feb 14. doi:https://doi.org/10.1038/s41526-017-0013-0

  34. Frings-Meuthen P, Berhardt G, Buehlmeier J, Baecker N, May F, Heer M (2019) The negative effect of unloading exceeds the bone-sparing effect of alkaline supplementation: a bed rest study. Osteoporos Int 30:431–439. https://doi.org/10.1007/s00198-018-4703-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a National Aeronautics and Space Administration (NASA) research grant (#NNX16AR26G) awarded to C.J Ade and D.A. Bemben.

Author information

Authors and Affiliations

Authors

Contributions

DAB wrote the first draft of the manuscript, contributed to the conception and design of the study, supervised the bone marker assays, and performed the data analyses for the bone and miRNA variables. CJA contributed to the conception and design of the study and revised the manuscript. SRB conducted assays, contributed to the data analyses, and revised the manuscript. BSB conducted assays and revised the manuscript.

Corresponding author

Correspondence to D.A. Bemben.

Ethics declarations

Conflicts of interest

None.

Ethics approval

This study was approved by the NASA Institutional Review Board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1

Individual Percent Change Responses to Bed Rest for Total Hip aBMD (Panel A), Serum Calcium (Panel B), Serum TRAP5b (Panel C), and Serum Sclerostin (Panel D). (n=10 for Total Hip aBMD; n=11 for bone markers) (PNG 83 kb)

High resolution image (TIF 64 kb)

ESM 1

(PNG 81 kb)

High resolution image (TIF 66 kb)

ESM 2

(DOCX 12 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bemben, D., Baker, B., Buchanan, S. et al. Circulating MiR-21 expression is upregulated after 30 days of head-down tilt bed rest. Osteoporos Int 32, 1369–1378 (2021). https://doi.org/10.1007/s00198-020-05805-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05805-2

Keywords

Navigation