Skip to main content
Log in

Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The quantitative computed tomography (QCT) scans in an individually matched case–control study of women with hip fracture were analysed. There were widespread deficits in the femoral volumetric bone mineral density (vBMD) and cortical thickness of cases, and cortical vBMD and thickness discriminated hip fracture independently of BMD by dual-energy X-ray absorptiometry (DXA).

Introduction

Acknowledging the limitations of QCT associated with partial volume effects, we used QCT in an individually matched case–control study of women with hip fracture to better understand its structural basis.

Methods

Fifty postmenopausal women (55–89 years) who had sustained hip fractures due to low-energy trauma underwent QCT scans of the contralateral hip within 3 months of the fracture. For each case, postmenopausal women, matched by age (±5 years), weight (±5 kg) and height (±5 cm), were recruited as controls. We quantified cortical, trabecular and integral vBMD and apparent cortical thickness (AppCtTh) in four quadrants of cross-sections along the length of the femoral head (FH), femoral neck (FN), intertrochanter and trochanter and examined their association with hip fracture.

Results

Women with hip or intracapsular (IC) fracture had significantly (p < 0.05) lower vBMD and AppCtTh than the controls in the majority of cross-sections and quadrants of the proximal femur, and both cortical and trabecular compartments are involved. Cortical vBMD and AppCtTh in the FH and FN were associated with hip and IC fractures independent of hip areal BMD (aBMD). The combination of AppCtTh and trabecular or integral vBMD discriminated hip fracture, whereas the combination of FH and FN AppCtTh discriminated IC fracture significantly (p < 0.05) better than the hip aBMD.

Conclusion

Deficits in vBMD and AppCtTh in cases were widespread in the proximal femur, and cortical vBMD and AppCtTh discriminated hip fracture independently of aBMD by DXA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4:49–56

    Article  PubMed  Google Scholar 

  2. Burr DB (2004) Bone quality: understanding what matters. J Musculoskelet Neuronal Interact 4:184–186

    CAS  PubMed  Google Scholar 

  3. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  CAS  PubMed  Google Scholar 

  4. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  CAS  PubMed  Google Scholar 

  5. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    Article  CAS  PubMed  Google Scholar 

  6. Bousson V, Le BA, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864

    Article  CAS  PubMed  Google Scholar 

  7. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108

    Article  CAS  PubMed  Google Scholar 

  8. Lochmuller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18:906–912

    Article  PubMed  Google Scholar 

  9. Schuit SC, van der KM, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  10. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, Hochberg MC, Vogt MT, Orwoll ES (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793

    Article  CAS  PubMed  Google Scholar 

  11. Genant HK, Engelke K, Prevrhal S (2008) Advanced CT bone imaging in osteoporosis. Rheumatology 47(Suppl 4):iv9–iv16

    PubMed  Google Scholar 

  12. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135

    Article  PubMed  Google Scholar 

  13. Poole KE, Mayhew PM, Rose CM, Brown JK, Bearcroft PJ, Loveridge N, Reeve J (2009) Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res 25:482–491

    Article  Google Scholar 

  14. Marshall LM, Lang TF, Lambert LC, Zmuda JM, Ensrud KE, Orwoll ES (2006) Dimensions and volumetric BMD of the proximal femur and their relation to age among older U.S. men. J Bone Miner Res 21:1197–1206

    Article  PubMed  Google Scholar 

  15. Riggs BL, Melton IL III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  16. Keaveny TM, Kopperdahl DL, Melton LJ III, Hoffmann PF, Amin S, Riggs BL, Khosla S (2010) Age-dependence of femoral strength in white women and men. J Bone Miner Res 25:994–1001

    Article  PubMed  Google Scholar 

  17. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  CAS  PubMed  Google Scholar 

  18. Eastell R, Lang T, Boonen S, Cummings S, Delmas PD, Cauley JA, Horowitz Z, Kerzberg E, Bianchi G, Kendler D, Leung P, Man Z, Mesenbrink P, Eriksen EF, Black DM (2010) Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos Int 21:1277–1285

    Article  CAS  PubMed  Google Scholar 

  19. Lewiecki EM, Keaveny TM, Kopperdahl DL, Genant HK, Engelke K, Fuerst T, Kivitz A, Davies RY, Fitzpatrick LA (2009) Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J Clin Endocrinol Metab 94:171–180

    Article  CAS  PubMed  Google Scholar 

  20. Lang T, LeBlanc A, Evans H, Lu Y, Genant HK, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  21. Amin S, Kopperdhal DL, Melton LJ III, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S (2011) Association of hip strength estimates by finite element analysis with fractures in women and men. J Bone Miner Res 26:1593–1600

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B, Jonsson BY, Sigurdsson S, Harris TB, Gudnason VG, Sigurdsson G (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case–control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone 48:1268–1276

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cody DD, Divine GW, Nahigian K, Kleerekoper M (2000) Bone density distribution and gender dominate femoral neck fracture risk predictors. Skeletal Radiol 29:151–161

    Article  CAS  PubMed  Google Scholar 

  24. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PF, Kopperdahl DL, Keaveny TM (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 24:475–483

    Article  PubMed  Google Scholar 

  25. Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 23:1326–1333

    Article  PubMed  Google Scholar 

  26. Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD (2011) In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J Bone Miner Res 26:881–893

    Article  PubMed  Google Scholar 

  27. Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Maric I, McCloskey EV, Eastell R (2008) Shape, structural properties and cortical stability along the femoral neck: a study using clinical QCT. J Clin Densitom 11:373–382

    Article  PubMed  Google Scholar 

  29. Werner C, Iversen BF, Therkildsen MH (1988) Contribution of the trabecular component to mechanical strength and bone mineral content of the femoral neck. An experimental study on cadaver bones. Scand J Clin Lab Invest 48:457–460

    Article  CAS  PubMed  Google Scholar 

  30. Holzer G, von SG, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474

    Article  PubMed  Google Scholar 

  31. Verhulp E, Van RB, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35

    Article  CAS  PubMed  Google Scholar 

  32. Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261

    Article  CAS  PubMed  Google Scholar 

  33. Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64

    Article  CAS  PubMed  Google Scholar 

  34. Thomas CD, Mayhew PM, Power J, Poole KE, Loveridge N, Clement JG, Burgoyne CJ, Reeve J (2009) Femoral neck trabecular bone: loss with ageing and role in preventing fracture. J Bone Miner Res 24:1808–1818

    Article  PubMed  Google Scholar 

  35. Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119

    Article  CAS  PubMed  Google Scholar 

  36. Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16:1318–1328

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Kornak J, Harris T, Keyak J, Li C, Lu Y, Cheng X, Lang T (2009) Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone 44:596–602

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang L, Burton AC, Bradburn M, Nielson CM, Orwoll ES, Eastell R (2012) Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 27:2314–2324

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Sycheva AV, Black DM, Eastell R (2013) Site-specific differential effects of once-yearly zoledronic acid on the hip assessed with quantitative computed tomography: results from the HORIZON Pivotal Fracture Trial. Osteoporos Int 24:329–338

    Article  CAS  PubMed  Google Scholar 

  40. Stephenson P, Seedhom BB (2001) Modelling femoral curvature in the sagittal plane: a cadaveric study. Proc Inst Mech Eng H 215:221–228

    Article  CAS  PubMed  Google Scholar 

  41. Bell KL, Loveridge N, Power J, Rushton N, Reeve J (1999) Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck. Osteoporos Int 10:248–257

    Article  CAS  PubMed  Google Scholar 

  42. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736

    Article  PubMed  Google Scholar 

  43. Pulkkinen P, Jamsa T, Lochmuller EM, Kuhn V, Nieminen MT, Eckstein F (2008) Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int 19:547–558

    Article  CAS  PubMed  Google Scholar 

  44. Poole KE, Treece GM, Mayhew PM, Vaculik J, Dungl P, Horak M, Stepan JJ, Gee AH (2012) Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS One 7:e38466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20:213–218

    Article  CAS  PubMed  Google Scholar 

  46. Moreland JD, Richardson JA, Goldsmith CH, Clase CM (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52:1121–1129

    Article  PubMed  Google Scholar 

  47. Nielson CM, Bouxsein ML, Freitas SS, Ensrud KE, Orwoll ES (2009) Trochanteric soft tissue thickness and hip fracture in older men. J Clin Endocrinol Metab 94:491–496

    Article  CAS  PubMed  Google Scholar 

  48. Lang T, Koyama A, Li C, Li J, Lu Y, Saeed I, Gazze E, Keyak J, Harris T, Cheng X (2008) Pelvic body composition measurements by quantitative computed tomography: association with recent hip fracture. Bone 42:798–805

    Article  CAS  PubMed  Google Scholar 

  49. Bouxsein ML, Szulc P, Munoz F, Thrall E, Sornay-Rendu E, Delmas PD (2007) Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. J Bone Miner Res 22:825–831

    Article  PubMed  Google Scholar 

  50. Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TF (2011) Male–female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48:1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lang TF, Cauley J, Tylavsky F, Bauer D, Cummings S, Harris T (2010) Computed tomography measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging and body composition study. J Bone Miner Res 25:513–519

    Article  PubMed  Google Scholar 

  52. Jorgensen L, Crabtree NJ, Reeve J, Jacobsen BK (2000) Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone 27:701–707

    Article  CAS  PubMed  Google Scholar 

  53. Rittweger J, Beller G, Armbrecht G, Mulder E, Buehring B, Gast U, Dimeo F, Schubert H, de HA, Stegeman DF, Schiessl H, Felsenberg D (2010) Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 46:137–147

    Article  PubMed  Google Scholar 

  54. Beller G, Belavy DL, Sun L, Armbrecht G, Alexandre C, Felsenberg D (2011) WISE-2005: bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 49:858–866

    Article  PubMed  Google Scholar 

  55. Wang H, Wan Y, Tam KF, Ling S, Bai Y, Deng Y, Liu Y, Zhang H, Cheung WH, Qin L, Cheng JC, Leung KS, Li Y (2011) Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest. Osteoporos Int 23:2169–2178

    Article  PubMed  Google Scholar 

  56. Hangartner TN, Gilsanz V (1996) Evaluation of cortical bone by computed tomography. J Bone Miner Res 11:1518–1525

    Article  CAS  PubMed  Google Scholar 

  57. Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys 30:1–8

    Article  PubMed  Google Scholar 

  58. Treece GM, Gee AH, Mayhew PM, Poole KE (2010) High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal 14:276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poole KE, Treece GM, Ridgway GR, Mayhew PM, Borggrefe J, Gee AH (2011) Targeted regeneration of bone in the osteoporotic human femur. PLoS One 6:e16190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank our funders, the Medical Research Council, UK (grant number G0601272) and the National Institute for Health Research (NIHR), UK. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Udall, W.J.M., McCloskey, E.V. et al. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25, 251–263 (2014). https://doi.org/10.1007/s00198-013-2401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2401-y

Keywords

Navigation