Skip to main content
Log in

Overweight in childhood and bone density and size in adulthood

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We evaluated the adult bone structural traits in relation to childhood overweight in 832 men and women. Childhood overweight was associated with larger cross-sections at long bones in both sexes. Excess weight in childhood may also lead to higher trabecular density in females and somewhat lower cortical density in men.

Introduction

Excess body weight in childhood may impose more loading on growing skeleton and thus lead to more robust structure in adulthood.

Methods

This prospective cohort study evaluated the adult bone structural traits in relation to childhood overweight in a subgroup of 456 women and 376 men from the population-based cohort of Cardiovascular Risks in Young Finns Study. Between-group differences were evaluated with analysis of covariance.

Results

According to established body mass index (BMI) criterion at the age of 12 years, 31 women and 34 men were classified overweight in childhood. At the mean age (SD) of 36.1 (2.7) years, total cross-sectional (ToA) and cortical area (CoA) at the distal and shaft sites and cortical (shaft CoD) and trabecular (distal TrD) bone density of the nonweight-bearing radius and weight-bearing tibia were evaluated with pQCT. Despite being taller in adolescence, the adult body height of overweight children was similar. In both sexes, childhood overweight was consistently associated with 5–10% larger ToA at all bone sites measured in adulthood. CoA did not show such a consistent pattern. Women, who were overweight in childhood, had ~5% denser TrD with no difference in CoD. In contrast, TrD in men who were overweight in childhood was not different but their CoD was ~1% lower.

Conclusions

Childhood overweight was consistently associated with larger long bone cross-sections in both sexes. Excess weight in childhood may also lead to higher trabecular density in women and somewhat lower cortical density in men. Specific mechanisms underlying these associations are not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manzoni P, Brambilla P, Pietrobelli A et al (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    PubMed  CAS  Google Scholar 

  2. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    PubMed  CAS  Google Scholar 

  3. Stettler N, Berkowtiz RI, Cronquist JL et al (2008) Observational study of bone accretion during successful weight loss in obese adolescents. Obesity (Silver Spring) 16:96–101

    Article  Google Scholar 

  4. Goulding A, Taylor RW, Jones IE et al (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632

    Article  PubMed  CAS  Google Scholar 

  5. Petit MA, Beck TJ, Lin HM et al (2004) Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women’s Health Study. Bone 35:750–759

    Article  PubMed  CAS  Google Scholar 

  6. Klein KO, Larmore KA, de Lancey E et al (1998) Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J Clin Endocrinol Metab 83:3469–3475

    Article  PubMed  CAS  Google Scholar 

  7. Pollock NK, Laing EM, Baile CA et al (2007) Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr 86:1530–1538

    PubMed  CAS  Google Scholar 

  8. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr 139:509–515

    Article  PubMed  CAS  Google Scholar 

  9. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM (2000) More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15:2011–2018

    Article  PubMed  CAS  Google Scholar 

  10. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V (2001) Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res 16:1337–1342

    Article  PubMed  CAS  Google Scholar 

  11. Bolotin HH, Sievanen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18:1020–1027

    Article  PubMed  CAS  Google Scholar 

  12. Bolotin HH, Sievanen H, Grashuis JL, Kuiper JW, Jarvinen TL (2001) Inaccuracies inherent in patient-specific dual-energy X-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation. J Bone Miner Res 16:417–426

    Article  PubMed  CAS  Google Scholar 

  13. Gilsanz V, Kovanlikaya A, Costin G et al (1997) Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 82:1603–1607

    Article  PubMed  CAS  Google Scholar 

  14. Ducher G, Bass SL, Naughton GA et al (2009) Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 90:1104–1111

    Article  PubMed  CAS  Google Scholar 

  15. Beck TJ, Petit MA, Wu G et al (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24:1369–1379

    Article  PubMed  Google Scholar 

  16. Laitinen J, Kiukaanniemi K, Heikkinen J et al (2005) Body size from birth to adulthood and bone mineral content and density at 31 years of age: results from the northern Finland 1966 birth cohort study. Osteoporos Int 16:1417–1424

    Article  PubMed  CAS  Google Scholar 

  17. Uusi-Rasi K, Kannus P, Pasanen M, Sievanen H (2010) Is childhood obesity associated with bone density and strength in adulthood? J Osteoporos. doi:10.4061/2010/904806

  18. Kannus P, Haapasalo H, Sankelo M et al (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123:27–31

    PubMed  CAS  Google Scholar 

  19. Raitakari OT, Juonala M, Ronnemaa T et al (2008) Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol 37:1220–1226

    Article  PubMed  Google Scholar 

  20. Laaksonen MM, Sievanen H, Tolonen S et al (2010) Determinants of bone strength and fracture incidence in adult Finns: Cardiovascular Risk in Young Finns Study/the GENDI pQCT study. Arch Osteoporos 5:119–130

    Article  Google Scholar 

  21. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  PubMed  CAS  Google Scholar 

  22. Slaughter MH, Lohman TG, Boileau RA et al (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60:709–723

    PubMed  CAS  Google Scholar 

  23. Laaksonen MM, Mikkila V, Rasanen L et al (2009) Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. Br J Nutr 102:8–17

    Article  PubMed  CAS  Google Scholar 

  24. Telama R, Yang X, Viikari J et al (2005) Physical activity from childhood to adulthood: a 21-year tracking study. Am J Prev Med 28:267–273

    Article  PubMed  Google Scholar 

  25. Sievanen H, Koskue V, Rauhio A et al (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871–882

    Article  PubMed  CAS  Google Scholar 

  26. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2002) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 17:2281–2289

    Article  PubMed  Google Scholar 

  27. Riggs BL, Melton Iii LJ 3rd, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  28. Schoenau E, Neu CM, Rauch F, Manz F (2002) Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone 31:110–113

    Article  PubMed  CAS  Google Scholar 

  29. De Simone M, Farello G, Palumbo M et al (1995) Growth charts, growth velocity and bone development in childhood obesity. Int J Obes 19:851–857

    Google Scholar 

  30. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2009) The influence of pubertal timing on bone mass acquisition: a predetermined trajectory detectable five years before menarche. J Clin Endocrinol Metab 94:3424–3431

    Article  PubMed  CAS  Google Scholar 

  31. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) Influence of age at menarche on forearm bone microstructure in healthy young women. J Clin Endocrinol Metab 93:2594–2601

    Article  PubMed  CAS  Google Scholar 

  32. Kindblom JM, Lorentzon M, Norjavaara E et al (2006) Pubertal timing is an independent predictor of central adiposity in young adult males: the Gothenburg osteoporosis and obesity determinants study. Diabetes 55:3047–3052

    Article  PubMed  CAS  Google Scholar 

  33. Lorentzon M, Norjavaara E, Kindblom JM (2011) Pubertal timing predicts leg length and childhood body mass index predicts sitting height in young adult men. J Pediatr 158:452–457

    Article  PubMed  Google Scholar 

  34. Husu P, Paronen O, Suni JH, Vasankari T (2011) [Suomalaisten fyysinen aktiivisuus ja kunto 2010] Physical activity and fitness of Finns in 2010. Publications of Ministry of Education and Culture

  35. Paturi M, Tapanainen H, Reinivuo H, Pietinen P (eds) (2008) The National FINDIET 2007 survey. Publications of National Public Health institute

  36. Frost HM (1999) An approach to estimating bone and joint loads and muscle strength in living subjects and skeletal remains. Am J Hum Biol 11:437–455

    Article  PubMed  Google Scholar 

  37. Petit MA, Beck TJ, Shults J et al (2005) Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36:568–576

    Article  PubMed  Google Scholar 

  38. Wetzsteon RJ, Petit MA, Macdonald HM et al (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  39. Wapniarz M, Lehmann R, Reincke M et al (1997) Determinants of radial bone density as measured by PQCT in pre- and postmenopausal women: the role of bone size. J Bone Miner Res 12:248–254

    Article  PubMed  CAS  Google Scholar 

  40. Wang MC, Bachrach LK, Van Loan M et al (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481

    Article  PubMed  CAS  Google Scholar 

  41. Currey JD (2003) How well are bones designed to resist fracture? J Bone Miner Res 18:591–598

    Article  PubMed  Google Scholar 

  42. Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91:2534–2541

    Article  PubMed  CAS  Google Scholar 

  43. Viljakainen HT, Pekkinen M, Saarnio E et al (2011) Dual effect of adipose tissue on bone health during growth. Bone 48:212–217

    Article  PubMed  CAS  Google Scholar 

  44. Schoenau E, Neu CM, Rauch F, Manz F (2001) The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 86:613–618

    Article  PubMed  CAS  Google Scholar 

  45. Jarvinen TL, Kannus P, Sievanen H (2003) Estrogen and bone—a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931

    Article  PubMed  Google Scholar 

  46. Uusi-Rasi K, Sievanen H, Vuori I et al (1999) Long-term recreational gymnastics, estrogen use, and selected risk factors for osteoporotic fractures. J Bone Miner Res 14:1231–1238

    Article  PubMed  CAS  Google Scholar 

  47. Radak TL (2004) Caloric restriction and calcium’s effect on bone metabolism and body composition in overweight and obese premenopausal women. Nutr Rev 62:468–481

    Article  PubMed  Google Scholar 

  48. Larmore KA, O’Connor D, Sherman TI et al (2002) Leptin and estradiol as related to change in pubertal status and body weight. Med Sci Monit 8:CR206–CR210

    PubMed  CAS  Google Scholar 

  49. Veldhuis JD, Roemmich JN, Richmond EJ et al (2005) Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 26:114–146

    Article  PubMed  CAS  Google Scholar 

  50. Cheng S, Volgyi E, Tylavsky FA et al (2009) Trait-specific tracking and determinants of body composition: a 7-year follow-up study of pubertal growth in girls. BMC Med 7:5

    Article  PubMed  Google Scholar 

  51. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res 14:1672–1679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Young Finns Study has been financially supported by the Academy of Finland (grants no. 117797, 126925, 121584, 117941), the Social Insurance Institution of Finland, the Turku University Foundation, the Finnish Cultural Foundation, the Yrjö Jahnsson Foundation, the Emil Aaltonen Foundation (TL), Competitive Research Funding of Tampere University Hospital (grant 9M048), Turku University Central Hospital Medical Fund, the Juho Vainio Foundation, and the Finnish Foundation for Cardiovascular Research and Tampere Tuberculosis Foundation.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Uusi-Rasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uusi-Rasi, K., Laaksonen, M., Mikkilä, V. et al. Overweight in childhood and bone density and size in adulthood. Osteoporos Int 23, 1453–1461 (2012). https://doi.org/10.1007/s00198-011-1737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1737-4

Keywords

Navigation