Skip to main content

Advertisement

Log in

Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Animal models suggest a role for osteonectin/SPARC in determination of bone mass. We found haplotypes consisting of three single nucleotide polymorphisms (SNPs) in the 3′ untranslated region (UTR) of the osteonectin gene are associated with bone density in Caucasian men with idiopathic osteoporosis.

Introduction

Osteonectin is a matricellular protein regulating matrix assembly, osteoblast differentiation, and survival. Animal studies indicate that osteonectin is essential for normal bone mass. The 3′ UTR is a regulatory region controlling mRNA stability, trafficking, and translation, and we determined whether osteonectin 3′ UTR haplotypes could be associated with bone mass and/or idiopathic osteoporosis.

Methods

Single strand conformation polymorphism and allele-specific PCR analysis were used to assess alleles at osteonectin cDNA bases 1046, 1599, and 1970, using genomic DNA from middle-aged Caucasian men with idiopathic, low turnover osteoporosis (n = 56) and matched controls (n = 59). Bone density was measured by DXA at spine, hip and radius. Allele and haplotype frequencies were analyzed by Chi square analysis and Fisher’s exact test.

Results

Five common osteonectin 3′ UTR haplotypes were identified. The frequency of one haplotype (1046C-1599C-1970T) was higher in controls compared with patients, and this haplotype was also associated with higher bone densities at multiple sites in patients. In contrast, a second haplotype (1046C-1599G-1970T) was associated with lower bone densities in patients at multiple sites.

Conclusions

Osteonectin regulates skeletal remodeling and bone mass in animals, and haplotypes in the 3′ UTR of this gene are associated with bone density in Caucasian men with idiopathic osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stewart TL, Ralston SH (2000) Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol 166:235–245

    Article  PubMed  CAS  Google Scholar 

  2. Kurland ES, Rosen CJ, Cosman F, McMahon D, Chan F, Shane E, Lindsay R, Dempster D, Bilezikian JP (1997) Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 82:2799–2805

    Article  PubMed  CAS  Google Scholar 

  3. Kurland ES, Chan FK, Rosen CJ, Bilezikian JP (1998) Normal growth hormone secretory reserve in men with idiopathic osteoporosis and reduced circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab 83:2576–2579

    Article  PubMed  CAS  Google Scholar 

  4. Cardon LR, Garner C, Bennett ST, Mackay IJ, Edwards SM, Cornish J, Hegde M, Murray MAF, Reid IR, Cundy T (2000) Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res 15:1132–1137

    Article  PubMed  CAS  Google Scholar 

  5. Van Pottelbergh I, Goemaere S, Zmierczak H, Kaufman JM (2004) Perturbed sex steroid status in men with idiopathic osteoporosis and their sons. J Clin Endocrinol Metab 89:4949–4953

    Article  PubMed  CAS  Google Scholar 

  6. Evans SF, Davie MWJ (2002) Low body size and elevated sex-hormone binding globulin distinguish men with idiopathic vertebral fracture. Calcif Tissue Int 70:9–15

    Article  PubMed  CAS  Google Scholar 

  7. Kurland ES, Khosla S, Colvin TL, Heller SL, Powell J, Seltzer B, McMahon D, Bilezikian JP (2003) The relative role of the sex steroids in idiopathic osteoporosis in men. J Bone Miner Res 18(Suppl):SA331 (abstract)

    Google Scholar 

  8. Giguere Y, Rousseau F (2000) The genetics of osteoporosis: “complexities and difficulties” Clin Genet 57:161–169

    Article  PubMed  CAS  Google Scholar 

  9. Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107:1049–1054

    Article  PubMed  CAS  Google Scholar 

  10. Barker TH, Baneyx G, Cardo-Vila m, Workman GA, Weaver M, Menon PM, Dedhar S, Rempel SA, Arap W, Pasqualini R, Vogel V, Sage EH (2005) SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase. J Biol Chem 280:36483–36493

    Article  PubMed  CAS  Google Scholar 

  11. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-null mice. J Clin Invest 105:915–923

    Article  PubMed  CAS  Google Scholar 

  12. Kessler C, Delany AM (2007) Increased notch 1 expression and attenuated stimulatory G protein coupling to adenylyl cyclase in osteonectin-null osteoblasts. Endocrinology 148:1666–1674

    Article  PubMed  CAS  Google Scholar 

  13. Fedarko NS, Moerike M, Brenner R, Gehron Robey P, Vetter U (1992) Extracellular matrix formation by osteoblasts from patients with osteogenesis imperfecta. J Bone Miner Res 7:921–930

    Article  PubMed  CAS  Google Scholar 

  14. Fedarko NS, Gehron Robey P, Vetter UK (1995) Extracellular matrix stoichiometry in osteoblasts from patients with osteogenesis imperfecta. J Bone Miner Res 10:1122–1129

    PubMed  CAS  Google Scholar 

  15. Muriel MP, Bonaventure J, Stanescu R, Maroteaux P, Guenet JL, Stanescu V (1991) Morphological and biochemical studies of a mouse mutant (fro/fro) with bone fragility. Bone 12:241–248

    Article  PubMed  CAS  Google Scholar 

  16. Fisher LW, Drum MA, Gehron Robey P, Conn KM, Termine JD (1987) Osteonectin content in human osteogenesis imperfecta bone shows a range similar to that of two bovine models of OI. Calcif Tissue Int 40:260–264

    Article  PubMed  CAS  Google Scholar 

  17. Kessler C, Delany AM (2006) Osteonectin/SPARC is critical for anabolic response to PTH in the skeleton. J Bone Miner Res 21S1:S134

    Google Scholar 

  18. Delany AM, Kalajzic I, Bradshaw AD, Sage EH, Canalis E (2003) Osteonectin-null mutation compromises osteoblast formation, maturation and survival. Endocrinology 144:2588–2596

    Article  PubMed  CAS  Google Scholar 

  19. Mendell JT, Dietz HC (2001) When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell 107:411–414

    Article  PubMed  CAS  Google Scholar 

  20. Zhou X, Tan FK, Reveille JD, Wallis D, Milewicz DM, Ahn C, Wang A, Arnett FC (2002) Association of novel polymorphisms with expression of SPARC in normal fibroblasts and with susceptibility to scleroderma. Arthritis Rheum 46:2900–2999

    Article  CAS  Google Scholar 

  21. Lagan AL, Pantelidis P, Renzoni EA, Fonseca C, Beirne P, Taegtmeyer AB, Denton CP, Black CM, Wells AU, duBios RM, Welsh KI (2005) Single-nucleotide polymorphisms in the SPARC gene are not associated with susceptibility to scleroderma. Rheumatology 44:197–201

    Article  PubMed  CAS  Google Scholar 

  22. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformantics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  23. Evans AL, Brice G, Sotirova V, Mortimer P, Beninon J, Burnand K, Rosbotham J, Chile A, Sarfarazi M (1999) Mapping of primary congenital lymphedema to the 5q35.3 region. Am J Hum Genet 64:547–555

    Article  PubMed  CAS  Google Scholar 

  24. Bassam BJ, Caitano-Annoles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  25. Barrett-Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM (2005) Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20:185–194

    Article  PubMed  Google Scholar 

  26. Swaroop A, Hogan BL, Franke U (1988) Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence, expression and localization of the gene to chromosome 5q31–33. Genomics 2:37–47

    Article  PubMed  CAS  Google Scholar 

  27. Villarreal XC, Mann KG, Long GL (1989) Structure of human osteonectin based upon analysis of cDNA and genomic sequences. Biochemistry 28:6483–6491

    Article  PubMed  CAS  Google Scholar 

  28. Bolander ME, Young MF, Fisher LW, Yamada Y, Termine JD (1988) Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor. Proc Natl Acad Sci USA 85:2919–2923

    Article  PubMed  CAS  Google Scholar 

  29. McVey JH, Nomura S, Kelly P, Mason IJ, Hogan BL (1988) Characterization of the mouse SPARC/osteonectin gene. J Biol Chem 263:11111–11116

    PubMed  CAS  Google Scholar 

  30. Liu Y-J, Shen H, Xiao P, Xiong D-H, Li L-H, Recker RR, Deng H-W (2006) Molecular genetic studies of gene identification for osteoporosis. A 2004 update. J Bone Miner Res 21:1511–1535

    Article  PubMed  CAS  Google Scholar 

  31. Willing M, Sowers M, Aron D, Clark MK, Burns T, Bunten C, Crutchfield M, D’Agostino D, Jannausch M (1998) Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 13:695–705

    Article  PubMed  CAS  Google Scholar 

  32. Ibaraki K, Gehron Robey P, Young MF (1993) Partial characterization of a novel “GGA” factor which binds to the osteonectin promoter in bovine bone cells. Gene 130:225–232

    Article  PubMed  CAS  Google Scholar 

  33. Hafner M, Zimmermann K, Pottgiesser J, Kreig T, Nischt R (1995) A purine-rich sequence in the human BM-40 gene promoter region is a prerequisite for maximum transcription. Matrix Biol 14:733–741

    Article  PubMed  CAS  Google Scholar 

  34. Dominguez P, Ibaraki K, Gehron Robey P, Hefferan TE, Termine JD, Young MF (1991) Expression of the osteonectin gene potentially controlled by multiple cis- and trans-acting factors in cultured bone cells. J Bone Miner Res 6:1127–1136

    PubMed  CAS  Google Scholar 

  35. Nomura S, Hashmi S, McVey JH, Ham J, Parker M, Hogan BLM (1989) Evidence for positive and negative regulatory elements in the 5’-flanking sequence of the mouse SPARC (osteonectin) gene. J Biol Chem 264:12201–12207

    PubMed  CAS  Google Scholar 

  36. Wrana JL, Overall CM, Sodek J (1991) Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor β. Eur J Biochem 197:519–528

    Article  PubMed  CAS  Google Scholar 

  37. Ng KW, Manji SS, Young MF, Findlay DM (1989) Opposing influences of glucocorticoid and retinoic acid on transcriptional control in preosteoblasts. Mol Endocrinol 3:2079–2085

    PubMed  CAS  Google Scholar 

  38. Delany AM, Canalis E (1998) Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblasts. Am J Physiol 274 (Cell Physiol. 43) C734–C740

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the expert technical assistance of Jonathan Shubert-Coleman, Ritu Bahl and Catherine Kessler. We thank Dr. Steve Mackey for his careful review of this manuscript and for helpful suggestions. We thank Dr. Mansoor Sarfarazi for his help in initiating the SNP analysis.

Funding

This work was supported by NIH grants AR44877 (AMD), DK31775 (DAG), NS27941 (DAG), AG20725 (ESK), as well as MO1RR06192 (University of Connecticut Health Center) and RR00645 (Columbia University Medical Center), and by the Donaghue Medical Research Foundation (AMD) and the National Osteoporosis Foundation/Mazess Research Award (ESK).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Delany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delany, A.M., McMahon, D.J., Powell, J.S. et al. Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis. Osteoporos Int 19, 969–978 (2008). https://doi.org/10.1007/s00198-007-0523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0523-9

Keywords

Navigation