Skip to main content
Log in

Detonability of THDCPD-exo–air mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In the frame of industrial risk and propulsive application, the detonability study of JP10–air mixtures was performed. The simulation and measurements of detonation parameters were performed for THDCPD-exo/air mixtures at various initial pressure (1 bar < P 0 <  3 bar) and equivalence ratio (0.8 < Φ < 1.6) in a heated tube (T 0 ~ 375 K). Numerical simulations of the detonation were performed with the STANJAN code and a detailed kinetic scheme of the combustion of THDCPD. The experimental study deals with the measurements of detonation velocity and cell size λ. The measured velocity is in a good agreement with the calculated theoretical values. The cell size measurements show a minimum value for Φ ~ 1.2 at every level of initial pressure studied and the calculated induction length L i corresponds to cell size value with a coefficient k = λ/L i = 24 at P 0 = 1 bar. Based on the comparison between the results obtained during this study and those available in the literature on the critical initiation energy E c, critical tube diameter d c and deflagration to detonation transition length L DDT, we can conclude that the detonability of THDCPD–air mixtures corresponds to that of hydrocarbon–air mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

tube inner diameter

D :

measured detonation velocity

D CJ :

Chapman–Jouguet detonation velocity

DDT:

deflagration to detonation transition

E c :

critical initiation energy of a spherical detonation

L i :

induction length

L DDT :

DDT Length

P :

pressure

T :

temperature

THDCPD:

tetrahydrodicyclopentadiene

u :

particule velocity

CJ:

Chapman–Jouguet state

ZND:

Zel’dovich–von Neuman–Döring state

0:

initial state

λ :

detonation cell size

Φ :

equivalence ratio

ρ :

density

σ :

Standard deviation of λ

τ i :

induction time

References

  1. Auffret, Y.: Etude de la détonation de mèlanges gazeux température initiale élevée. PhD Dissertation University of Poitiers (1998)

  2. Austin J.M. and Shepherd J.E. (2003). Detonations in hydrocarbon fuel blends. Combust. Flame 132: 73–90

    Article  Google Scholar 

  3. Bauer P., Brochet C. and Presles H.N. (1984). The influence of initial pressure on critical diameters of gaseous explosives mixtures. Prog. Astronaut. Aeronaut. 94: 118–128

    Google Scholar 

  4. Beeson H.D., McClenagan R.D., Bishop C.V., Benz F.J., Pitz W.J., Westbrook C.K. and Lee J.H. (1991). Detonability of hydrocarbon fuels in air. Prog. Astronaut. Aeronaut. 133: 19–36

    Google Scholar 

  5. Bull D.C., Elsworth J.E., Shuff P.J. and Metcalfe E. (1982). Detonation cell structures in fuel/air mixtures. Combust. Flame 45: 7–22

    Article  Google Scholar 

  6. Card J., Rival D. and Ciccarelli G. (2005). DDT in fuel–air mixtures at elevated temperatures and pressures. Shock Waves 14: 167–173

    Article  ADS  Google Scholar 

  7. Desbordes D. (1988). Transmission of overdriven plane detonations: critical diameter as a function od cell regularity and size. Prog. Astronaut. Aeronaut. 114: 170–185

    Google Scholar 

  8. Desbordes D., Guerraud H.L. and Presles H.N. (1993). Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems. Prog. Astronaut. Aeronaut. 153: 347–359

    Google Scholar 

  9. Dubois, C., Ringuette, S., Stowe, R.: Evaluation of modified JP-10 fuels for pulsed detonation engine. AIAA Paper A02-26684 (2002)

  10. Elsworth J.E. and Eyre J.A. (1984). The susceptibility of propene-propane/air mixtures to detonation. Combust. Flame 55: 237–243

    Article  Google Scholar 

  11. Kaneshige, M., Shepherd, J.: Detonation database, Technical Report FM97–8, GALCIT, July 1997. http://www.galcit.caltech.edu/detn_db/html/

  12. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin II: a fortran kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratory Technical Report SAND89-8009. Reprinted August 1993

  13. Li S.C., Varatharajan B. and Williams F.A. (2001). The chemistry of JP-10 ignition. AIAA J. 39: 2351–2356

    Article  ADS  Google Scholar 

  14. Manson, N.: Contribution l’étude de la propagation des détonations et des déflagrations dans les mélanges gazeux. PhD Dissertation, University of Paris (1946)

  15. Matsui H. and Lee J.H. (1978). On the measure of the relative detonations hazards of gaseous fuel–oxygen and air mixtures. Proc. Comb. Inst. 17: 1269–1279

    Google Scholar 

  16. Mitrofanov V.V. and Soloukhin R.I. (1965). The diffraction of multi-front detonation waves. Sov. Phys. Dokl. 9: 1055–1058

    ADS  Google Scholar 

  17. Peraldi O., Knystautas R. and Lee J.H.S. (1986). Criteria for transition to detonation in tubes. Proc. Comb. Inst. 21: 1629–1637

    Google Scholar 

  18. Pinard P.F., Higgins A.J. and Lee J.H.S. (2004). The effects of NO2 addition on deflagration-to-detonation transition. Combust. Flame 136: 146–154

    Article  Google Scholar 

  19. Reynolds, W.C.: The element potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN, Version 3, Department of Mechanical Engineering, Stanford University, Palo Alto, California (1986)

  20. Sorin, R.: Etude et optimisation de la transition déflagration détonation en tube des mélanges stoechiométriques H2/O2/N2 et (CH4, C2H2, C2H4, C3H8)/O2/N2 et de sa transmission à un espace de plus grande dimension, PhD Dissertation, University of Poitiers (2005)

  21. Sorin R., Zitoun R. and Desbordes D. (2006). Optimization of the deflagration to detonation transition: reduction of length and time of transition. Shock Waves 15: 137–145

    Article  ADS  Google Scholar 

  22. Hewson J.C. and Bollig M. (1996). Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames. Proc. Combust. Inst. 26: 2171–2179

    Google Scholar 

  23. Westbrook C.K. and Urtiew P.A. (1982). Chemical kinetic prediction of critical parameters in gaseous detonations. Proc. Comb. Inst. 19t: 583–590

    Google Scholar 

  24. Williams, F.A.: http://maemail.ucsd.edu/combustion/cermech/JP10-Reactions/

  25. Zel’dovich Y.B., Kogarko S.M. and Simonov N.H. (1956). Etude expérimentale de la détonation sphérique dans les gaz. Z.E.P.T. 26: 1744–1772

    Google Scholar 

  26. Zhang, F., Murray, S.B., Gerrard, K.: JP-10 vapor detonations at elevated pressures and temperatures. In: Proceedings of 18th ICDERS, Seattle (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Sorin.

Additional information

Communicated by F. Lu.

This paper is based on the work presented at the 33rd International Pyrotechnics Seminar, IPS 2006, Fort Collins, July 16–21, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorin, R., Bauer, P. & Desbordes, D. Detonability of THDCPD-exo–air mixtures. Shock Waves 17, 363–369 (2008). https://doi.org/10.1007/s00193-007-0117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-007-0117-7

Keywords

PACS

Navigation