Skip to main content
Log in

Detonation Combustion of a Hydrogen–Air Mixture with Additives of Argon and Ozone

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Using a detailed kinetic mechanism of chemical interaction, the effect of adding argon and ozone to a stoichiometric hydrogen–air mixture on the detonation wave parameters was studied numerically. It has been established that the mole fractions of the used additions can be chosen so that the cell size of the detonation wave in the resulting mixture will be close to the average cell size in a pure hydrogen–air mixture, with the wave velocity and temperature of the detonation products being reduced significantly. It has been found that the detonation wave in a mixture with additives in selected concentrations is more stable against perturbations caused by multiple obstacles (barriers) located in the channel than in the initial mixture. The found specific features make it possible to consider the introduction of the indicated additives into the combustible mixture as a mechanism that lowers the temperature in the detonation wave without a significant increase in the detonation cell size and that prevents the extinction of detonation combustion in a channel with a number of barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Levin and T. A. Zhuravskaya, Controlling the position of a stabilized detonation wave in a supersonic flow of a gas mixture in a plane channel, Tech. Phys. Lett., 43, No. 3, 316–319; doi: https://doi.org/10.1134/S1063785017030191).

  2. V. A. Levin and T. A. Zhuravskaya, Control of detonation combustion in a high-velocity gas mixture flow, in: Proc. V. A. Steklov Inst. Math., 300, 114–125 (2018); doi: https://doi.org/10.1134/S0081543818010091).

    Article  MathSciNet  Google Scholar 

  3. V. A. Levin and T. A. Zhuravskaya, The methods of control of stabilized detonation location in a supersonic gas flow in a plane channel, Combust. Sci. Technol., 195, No. 7, 1–13 (2019); doi: https://doi.org/10.1080/00102202.2018.1557641.

    Article  Google Scholar 

  4. A. A. Vasil'ev, A. V. Pinaev, A. A. Trubitsyn, A. Yu. Grachev, A. V. Trotsyuk, P. A. Fomin, and A. V. Trilis, What is burning in coal mines: Methane or coal dust? Combust. Explos. Shock Waves, 53, No. 1, 8–14 (2017); doi: https://doi.org/10.1134/S0010508217010026).

    Article  Google Scholar 

  5. V. A. Levin and T. A. Zhuravskaya, Detonation combustion control using preliminary preparation of the gas mixture, Tech. Phys. Lett, 46, No. 2, 189–192 (2020); doi: https://doi.org/10.1134/S1063785020020248).

    Article  Google Scholar 

  6. T. A. Zhuravskaya and V. A. Levin, Control of a detonation wave in a channel with obstacles using preliminary gas mixture preparation, Fluid Dyn., 55, 488–497 (2020); doi: https://doi.org/10.1134/S0015462820040138).

    Article  MathSciNet  Google Scholar 

  7. . J. Cra ne, X. Sh i, A. V. Sing h, Y. Ta o, and H. Wang, Isolating the effect of induction length on detonation structure: Hydrogen–oxygen detonation promoted by ozone, Combust. Flame, 200, 44–52 (2019); doi: https://doi.org/10.1016/j.combustflame.2018.11.008).

  8. M. A. Cherif, S. A. Shcherbanev, S. M. Starikovskaia, et al., Effect of non-equilibrium plasma on decreasing the detonation cell size, Combust. Flame, 217, 1–3 (2020); doi: https://doi.org/10.1016/j.combustflame.2020.03.014).

    Article  Google Scholar 

  9. . F. Pintge n, C. A. Ecke tt, J. M. Austin , and J. E. Shepherd, Direct observations of reaction zone structure in propagating detonations, Combust. Flame, 133, Issue 3, 211–229 (2003); doi: https://doi.org/10.1016/S0010-2180(02)00458-3.

  10. J. E. Shepherd, Detonation gases, in: Proc. Combust. Inst., 32, Issue 1, 83–98 (2009); doi: https://doi.org/10.1016/j.proci.2008.08.006.

    Article  Google Scholar 

  11. D. S. Kumar, K. Ivin, and A. V. Singh, Sensitizing gaseous detonations for hydrogen/ethylene–air mixtures using ozone and H2O2 as dopants for application in rotating detonation engines, Proc. Combust. Inst., 38, Issue 3, 3825–3834 (2021); doi: https://doi.org/10.1016/j.proci.2020.08.061.

    Article  Google Scholar 

  12. V. A. Levin and T. A. Zhuravskaya, Control of detonation combustion of a hydrogen–air mixture by argon and ozone addition, Dokl. Phys., 66, 320–324 (2021); doi: https://doi.org/10.1134/S1028335821110057).

    Article  Google Scholar 

  13. L. V. Gurvich and I. V. Veyts (Eds.), Thermodynamic Properties of Individual Substances, Vol. 1, Part 2, New York: Hemisphere (1989).

  14. L. V. Bezgin, V. I. Kopchenov, A. S. Sharipov, N. S. Titova, and A. M. Starik, Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows, Combust. Sci. Technol., 185, Issue 1, 62–94 (2013); doi: https://doi.org/10.1080/00102202.2012.709562.

    Article  Google Scholar 

  15. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  16. V. P. Kolgan, Application of the principle of minimal values of the derivative to construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics, Uch. Zap. TsAGI, 3, No. 6, 68–77 (1972).

    Google Scholar 

  17. Van Leer B, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23, 276–299 (1977).

  18. A. V. Rodionov, Monotonic scheme of the second order of approximation for the continuous calculation of nonequilibrium flows, USSR Comput. Math. Math. Phys., 27, Issue 2, 175–180 (1987); doi: https://doi.org/10.1016/0041-5553(87)90174-1).

    Article  MathSciNet  Google Scholar 

  19. Vl. Voevodin, A. Antonov, D. Nikitenko, P. Shvets, S. Sobolev, I. Sidorov, K. Stefanov, Vad. Voevodin, and S. Zhumatiy, Supercomputer Lomonosov-2: Large Scale, deep monitoring and fine analytics for the user community, Supercomp. Front. Innov., 6, No. 2, 4–11 (2019); doi: https://doi.org/10.14529/jsfi190201.

  20. R. I. Soloukhin, Shock Waves and Detonations in Gases, Baltimore: Mono Book (1966).

  21. J. H. S. Lee, The Detonation Phenomenon, Cambridge: Cambridge University Press (2008).

    Book  Google Scholar 

  22. G. Yu. Bivol, S. V. Golovastov, and V. V. Golub, Detonation suppression in hydrogen–air mixtures using porous coatings on the walls, Shock Waves, 28, Issue 5, 1011–1018 (2018); https://doi.org/10.1007/s00193-018-0831-3.

    Article  Google Scholar 

  23. O. V. Sharypov and Y. A. Pirogov, On the mechanism of weakening and breaking of gas detonation in channels with acoustically absorbing walls, Combust. Explos. Shock Waves, 31, Issue 4, 466–470 (1995); doi: https://doi.org/10.1007/BF00789368).

    Article  Google Scholar 

  24. A. Teodorczyk and J. H. S. Lee, Detonation attenuation by foams and wire meshes lining the walls, Shock Waves, 4, Issue 4, 225–236 (1995); doi: https://doi.org/10.1007/BF01414988).

    Article  Google Scholar 

  25. M. I. Radulescu and J. H. S. Lee, The failure mechanism of gaseous detonations: experiments in porous wall tubes, Combust. Flame, 131, Issues 1–2, 29–46 (2002); doi: http://dx.doi.org/https://doi.org/10.1016/S0010-2180(02)00390-5.

    Article  Google Scholar 

  26. S. A. Zhdanok, P. N. Krivosheyev, and O. G. Penyaz'kov, Investigations of propagation and transition of detonation from porous medium to volume, Russ. J. Phys. Chem., 24, No. 7, 27–36 (2005).

    Google Scholar 

  27. S. A. Zhdanok, P. N. Krivosheev, M. Mbawara, and O. G. Penyaz′kov, Ranges of rates of supersonic combustion in a porous medium, J. Eng. Phys. Thermophys., 78, No. 4, 625–630 (2005); https://doi.org/10.1007/s10891-005-0106-6).

    Article  Google Scholar 

  28. T. A. Zhuravskaya, Propagation of detonation waves in plane channels with obstacles, Fluid Dyn., 42, Issue 6, 987–994 (2007); doi: https://doi.org/10.1134/S0015462807060142).

    Article  MathSciNet  Google Scholar 

  29. O. V. Achasov and O. G. Penyaz′kov, Investigation of the dynamic properties of the cellular structure of a gas-detonation wave, J. Eng. Phys. Thermophys., 73, No. 5, 915–920 (2000); doi: https://doi.org/10.1007/BF02681580).

    Article  Google Scholar 

  30. H. Qin, J. H. S. Lee, Z. Wang, and F. Zhuang, An experimental study on the onset processes of detonation waves downstream of a perforated plate, Proc. Combust. Inst., 35, Issue 2, 1973–1979 (2015); doi: http://dx.doi.org/https://doi.org/10.1016/j.proci.2014.07.056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Levin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 7, pp. 1792–1802, November–December, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Zhuravskaya, T.A. Detonation Combustion of a Hydrogen–Air Mixture with Additives of Argon and Ozone. J Eng Phys Thermophy 96, 1759–1768 (2023). https://doi.org/10.1007/s10891-023-02846-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02846-2

Keywords

Navigation