Skip to main content
Log in

Regional geoid computation by least squares modified Hotine’s formula with additive corrections

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Geoid and quasigeoid modelling from gravity anomalies by the method of least squares modification of Stokes’s formula with additive corrections is adapted for the usage with gravity disturbances and Hotine’s formula. The biased, unbiased and optimum versions of least squares modification are considered. Equations are presented for the four additive corrections that account for the combined (direct plus indirect) effect of downward continuation (DWC), topographic, atmospheric and ellipsoidal corrections in geoid or quasigeoid modelling. The geoid or quasigeoid modelling scheme by the least squares modified Hotine formula is numerically verified, analysed and compared to the Stokes counterpart in a heterogeneous study area. The resulting geoid models and the additive corrections computed both for use with Stokes’s or Hotine’s formula differ most in high topography areas. Over the study area (reaching almost 2 km in altitude), the approximate geoid models (before the additive corrections) differ by 7 mm on average with a 3 mm standard deviation (SD) and a maximum of 1.3 cm. The additive corrections, out of which only the DWC correction has a numerically significant difference, improve the agreement between respective geoid or quasigeoid models to an average difference of 5 mm with a 1 mm SD and a maximum of 8 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbak RA, Ustun A (2015) A software package for computing a regional gravimetric geoid model by the KTH method. Earth Sci Inform 8(1):255–265. doi:10.1007/s12145-014-0149-3

    Article  Google Scholar 

  • Abbak RA, Sjöberg LE, Ellmann A, Ustun A (2012) A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey. Stud Geophys Geod 56(4):909–927. doi:10.1007/s11200-011-9001-0

    Article  Google Scholar 

  • Abdalla A, Fairhead D (2011) A new gravimetric geoid model for Sudan using the KTH method. J Afr Earth Sci 60(4):213–221. doi:10.1016/j.jafrearsci.2011.02.012

    Article  Google Scholar 

  • Abdalla A, Tenzer R (2011) The evaluation of the New Zealand’s geoid model using the KTH method. Geod Cartogr 37(1):5–14. doi:10.3846/13921541.2011.558326

    Article  Google Scholar 

  • Ågren J (2004) Regional geoid determination methods for the era of satellite gravimetry: numerical investigations using synthetic earth gravity models. Ph.D. thesis, KTH Royal Institute of Technology, Stockholm

  • Ågren J, Barzaghi R, Carrion D, Denker H, Duquenne H, Grigoriadis VN, Kiamehr R, Sona G, Tscherning CC, Tziavos IN (2009a) Different geoid computation methods applied on a test dataset: results and considerations. In: VII Hotine–Marussi symposium on mathematical geodesy, Rome, 6–10 June. http://www.gfy.ku.dk/~cct/publ_cct/cct1988.pdf. Accessed 8 Sept 2017

  • Ågren J, Sjöberg LE, Kiamehr R (2009b) The new gravimetric quasigeoid model KTH08 over Sweden. J Appl Geod 3(3):143–153. doi:10.1515/JAG.2009.015

  • Ågren J, Strykowski G, Bilker-Koivula M, Omang O, Märdla S, Forsberg R, Ellmann A, Oja T, Liepinš I, Paršeliūnas E, Kaminskis J, Sjöberg L, Valsson G (2016) The NKG2015 gravimetric geoid model for the Nordic–Baltic region. In: 1st joint commission 2 and IGFS meeting international symposium on gravity, geoid and height systems. Thessaloniki, 19–23 September. doi:10.13140/RG.2.2.20765.20969

  • Alberts B, Klees R (2004) A comparison of methods for the inversion of airborne gravity data. J Geod 78(1–2):55–65. doi:10.1007/s00190-003-0366-x

    Google Scholar 

  • Barthelmes F, Köhler W (2016) International centre for global earth models (ICGEM). J Geod Geod Handb 90(10):1177–1180. doi:10.1007/s00190-016-0948-z

    Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Rosenberg JV, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371. doi:10.1080/01490410903297766

    Article  Google Scholar 

  • Bruinsma SL, Förste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):2014GL062–045. doi:10.1002/2014GL062045

    Article  Google Scholar 

  • Daras I (2008) Determination of a gravimetric geoid model of Greece using the method of KTH. Master’s thesis, KTH Royal Institute of Technology

  • Ellmann A (2004) The geoid for the Baltic countries determined by the least squares modification of Stokes’ formula. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm

  • Ellmann A (2005) Computation of three stochastic modifications of Stokes’s formula for regional geoid determination. Comput Geosci 31(6):742–755. doi:10.1016/j.cageo.2005.01.008

    Article  Google Scholar 

  • Ellmann A (2005b) On the numerical solution of parameters of the least squares modification of Stokes’ formula. In: Sansò PDF (ed) A window on the future of geodesy, no. 128 in international association of geodesy symposia. Springer, Berlin, pp 403–408. doi:10.1007/3-540-27432-4_69

  • Ellmann A (2005c) Two deterministic and three stochastic modifications of Stokes’s formula: a case study for the Baltic countries. J Geod 79(1–3):11–23. doi:10.1007/s00190-005-0438-1

    Article  Google Scholar 

  • Ellmann A, Vaníček P (2007) UNB application of Stokes–Helmert’s approach to geoid computation. J Geodyn 43(2):200–213. doi:10.1016/j.jog.2006.09.019

    Article  Google Scholar 

  • Evans JD, Featherstone WE (2000) Improved convergence rates for the truncation error in gravimetric geoid determination. J Geod 74(2):239–248. doi:10.1007/s001900050282

    Article  Google Scholar 

  • FAMOS Consortium (2014) FAMOS (Finalising Surveys for the Baltic Motorways of the Sea). http://www.famosproject.eu/famos/. Accessed 5 Sept 2017

  • Featherstone W (2003a) Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination. Comput Geosci 29(2):183–193. doi:10.1016/S0098-3004(02)00074-2

    Article  Google Scholar 

  • Featherstone WE (2003b) Band-limited kernel modifications for regional geoid determination based on dedicated satellite gravity field missions. In: Tziavos IN (ed) Gravity and geoid. Ziti Editions, Thessaloniki, pp 341–346

  • Featherstone WE (2013) Deterministic, stochastic, hybrid and band-limited modifications of Hotine’s integral. J Geod 87(5):487–500. doi:10.1007/s00190-013-0612-9

    Article  Google Scholar 

  • Featherstone WE, Evans JD, Olliver JG (1998) A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geod 72(3):154–160. doi:10.1007/s001900050157

    Article  Google Scholar 

  • Forsberg R (1993) Modelling the fine-structure of the geoid: methods, data requirements and some results. Surv Geophys 14(4–5):403–418. doi:10.1007/BF00690568

    Article  Google Scholar 

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. In: Sansó PDF, Rummel PDR (eds) Geodetic boundary value problems in view of the one centimeter geoid, no. 65 in Lecture Notes in earth sciences. Springer, Berlin, pp 239–272. doi:10.1007/BFb0011707

  • Guan Z, Li Y (1991) The determination of oceanic geoid using modified hotine integral. In: Rapp RH, Sansò F (eds) Determination of the geoid, no. 106 in international association of geodesy symposia. Springer, New York, pp 86–94. doi:10.1007/978-1-4612-3104-2_11

  • Hagiwara Y (1976) A new formula for evaluating the truncation error coefficient. Bull Géod 50(2):131–135. doi:10.1007/BF02522312

    Article  Google Scholar 

  • Häkli P, Lidberg M, Jivall L, Nørbech T, Tangen O, Weber M, Pihlak P, Aleksejenko I, Paršeliunas E (2016) The NKG2008 GPS campaign–final transformation results and a new common Nordic reference frame. J Geod Sci 6(1):1–33. doi:10.1515/jogs-2016-0001

    Google Scholar 

  • Heck B, Grüninger W (1987) Modification of Stokes’s integral formula by combining two classical approaches. In: Proceedings of the XIX IUGG general assembly, vol 2. Vancouver, pp 319–337

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman and Company, San Francisco

  • Hotine M (1969) Mathematical geodesy. US Environmental Science Services Administration, Rockville

  • ISG (2015) International Service for the Geoid: Baltic and Nordic Region (NKG2015). http://www.isgeoid.polimi.it/Geoid/Europe/NordicCountries/nordic_baltic_countries_g.html. Accessed 5 Sept 2017

  • Jekeli C (1979) Global accuracy estimates of point and mean undulation differences, gravity anomalies, and potential coefficients. Technical Report 288, The Ohio State University

  • Jekeli C (1980) Comparison of undulation difference accuracies using gravity anomalies and gravity disturbances. Bull Géod 54(2):137–147. doi:10.1007/BF02521243

    Article  Google Scholar 

  • Jekeli C (1981) Modifying Stokes’ function to reduce the error of geoid undulation computations. J Geophys Res Solid Earth 86(B8):6985–6990. doi:10.1029/JB086iB08p06985

    Article  Google Scholar 

  • Kaula WM (1963) The investigation of the gravitational fields of the moon and planets with artificial satellites. Adv Space Sci Technol 5:210–226

    Google Scholar 

  • Kiamehr R (2006) A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran. J Geod 79(10–11):602–612. doi:10.1007/s00190-005-0009-5

    Article  Google Scholar 

  • Kirby JF (2003) On the combination of gravity anomalies and gravity disturbances for geoid determination in Western Australia. J Geod 77(7–8):433–439. doi:10.1007/s00190-003-0334-5

    Article  Google Scholar 

  • Kuczynska-Siehien J, Lyszkowicz A, Birylo M (2016) Geoid determination for the area of Poland by the least squares modification of Stokes’ formula. Acta Geodyn Geomater 13(1 (181)):19–26. doi:10.13168/AGG.2015.0041

    Google Scholar 

  • Lysaker DI, Omang OCD, Pettersen BR, Solheim D (2007) Quasigeoid evaluation with improved levelled height data for Norway. J Geod 81(9):617–627. doi:10.1007/s00190-006-0129-6

    Article  Google Scholar 

  • Märdla S, Ågren J, Strykowski G, Oja T, Ellmann A, Forsberg R, Bilker-Koivula M, Omang O, Paršeliūnas E, Liepinš I, Kaminskis J (2017) From discrete gravity survey data to a high-resolution gravity field representation in the Nordic–Baltic region. Mar Geod. doi:10.1080/01490419:1326428

  • Märdla S, Ellmann A, Ågren J, Sjöberg LE (2017b) Regional geoid computation by least squares modified Hotine’s formula with additive corrections. In: Joint scientific assembly of the international association of geodesy (IAG) and international association of seismology and physics of the earth’s interior (IASPEI), July 30 to August 4, Kobe. doi:10.13140/RG.2.2.29154.63682

  • Meissl P (1971) Preparations for the numerical evaluation of second order Molodensky-type formulas. Technical Report 163, The Ohio State University

  • Molodenskii M, Eremeev V, Urkina M (1962) Methods for study of the external gravitation field and figure of the Earth. Translations from Russian, Jerusalem, Israel Program for Scientific Translations

  • Molodensky MS (1945) The principal problems of geodetic gravimetry (in Russian). TRUDY TsNIIGAiK 42

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74(1):128–133. doi:10.1007/s001900050278

    Article  Google Scholar 

  • Nahavandchi H, Sjöberg LE (2001) Precise geoid determination over Sweden using the Stokes–Helmert method and improved topographic corrections. J Geod 75(2–3):74–88. doi:10.1007/s001900000154

    Article  Google Scholar 

  • Novák P (2003) Geoid determination using one-step integration. J Geod 77(3–4):193–206. doi:10.1007/s00190-003-0314-9

    Article  Google Scholar 

  • Novák P, Heck B (2002) Downward continuation and geoid determination based on band-limited airborne gravity data. J Geod 76(5):269–278. doi:10.1007/s00190-002-0252-y

    Article  Google Scholar 

  • Novák P, Kern M, Schwarz KP, Sideris MG, Heck B, Ferguson S, Hammada Y, Wei M (2003) On geoid determination from airborne gravity. J Geod 76(9–10):510–522. doi:10.1007/s00190-002-0284-3

    Google Scholar 

  • Omang OCD, Forsberg R (2000) How to handle topography in practical geoid determination: three examples. J Geod 74(6):458–466. doi:10.1007/s001900000107

    Article  Google Scholar 

  • Paul MK (1973) A method of evaluating the truncation error coefficients for geoidal height. Bull Géo (1946–1975) 110(1):413–425. doi:10.1007/BF02521951

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran 77, 2nd edn: the art of scientific computing. Cambridge University Press, Cambridge

  • Rexer M, Hirt C (2015) Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000. J Geod 89(9):887–909. doi:10.1007/s00190-015-0822-4

    Article  Google Scholar 

  • Sansò F, Sideris MG (eds) (2013) Geoid determination, vol 110. In: Lecture notes in earth system sciences. Springer, Berlin

  • Serpas JG, Jekeli C (2005) Local geoid determination from airborne vector gravimetry. J Geod 78(10):577–587. doi:10.1007/s00190-004-0416-z

    Article  Google Scholar 

  • Sjöberg LE (1980) Least squares combination of satellite harmonics and integral formulas in physical geodesy. Gerlands Beitraege zur Geophysik 89:371–377

    Google Scholar 

  • Sjöberg LE (1984) Least squares modification of Stokes’ and Vening Meinesz’ formulas by accounting for truncation and potential coefficient errors. Manusc Geod 9:209–229

    Google Scholar 

  • Sjöberg LE (1986a) Comparison of some methods of modifying Stokes’ formula. In: Bolletino Di Geodesia e Scienze Affini, vol 3. Florence

  • Sjöberg LE (1986b) The modification of Stokes’ and Hotine’s formulas: A comparison. In: Proceedings of international symposium on figure and dynamics of the earth, moon, and planets. Prague, pp 323–333

  • Sjöberg LE (1989) Integral formulas for geopotential coefficient determination from gravity anomalies versus gravity disturbances. Bull Géod 63(2):213–221. doi:10.1007/BF02519152

    Article  Google Scholar 

  • Sjöberg LE (1991) Refined least squares modification of Stokes formula. Manusc Geod 16:367–375

    Google Scholar 

  • Sjöberg LE (2000) Topographic effects by the Stokes–Helmert method of geoid and quasi-geoid determinations. J Geod 74(2):255–268. doi:10.1007/s001900050284

    Article  Google Scholar 

  • Sjöberg LE (2003a) A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J Geod 77(7–8):423–432. doi:10.1007/s00190-003-0338-1

    Article  Google Scholar 

  • Sjöberg LE (2003b) A general model for modifying Stokes’ formula and its least-squares solution. J Geod 77(7–8):459–464. doi:10.1007/s00190-003-0346-1

    Article  Google Scholar 

  • Sjöberg LE (2003c) A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J Geod 77(1–2):94–100. doi:10.1007/s00190-002-0306-1

    Article  Google Scholar 

  • Sjöberg LE (2004) A spherical harmonic representation of the ellipsoidal correction to the modified Stokes formula. J Geod 78(3):180–186. doi:10.1007/s00190-004-0378-1

    Article  Google Scholar 

  • Sjöberg LE (2005) A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J Geod 78(11–12):645–653. doi:10.1007/s00190-004-0430-1

    Article  Google Scholar 

  • Sjöberg LE (2007) The topographic bias by analytical continuation in physical geodesy. J Geod 81(5):345–350. doi:10.1007/s00190-006-0112-2

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2017) Gravity inversion and integration. Springer, Berlin

  • Sjöberg LE, Eshagh M (2009) A geoid solution for airborne gravity data. Stud Geophys Geod 53(3):359–374. doi:10.1007/s11200-009-0025-7

    Article  Google Scholar 

  • Sjöberg LE, Featherstone WE (2004) Two-step procedures for hybrid geoid modelling. J Geod 78(1–2):66–75. doi:10.1007/s00190-003-0367-9

    Google Scholar 

  • Sjöberg LE, Hunegnaw A (2000) Some modifications of Stokes’ formula that account for truncation and potential coefficient errors. J Geod 74(2):232–238. doi:10.1007/s001900050281

    Article  Google Scholar 

  • Sjöberg LE, Nahavandchi H (2000) The atmospheric geoid effects in Stokes’ formula. Geophys J Int 140(1):95–100. doi:10.1046/j.1365-246x.2000.00995.x

    Article  Google Scholar 

  • Sjöberg LE, Nord T (1992) Geoidal undulation computation by modifying Stokes’s kernel versus Hotine’s kernel from gravity anomalies. Manuscr Geod 17:135–140

    Google Scholar 

  • Sjöberg LE, Gidudu A, Ssengendo R (2015) The Uganda gravimetric geoid model 2014 computed by the KTH method. J Geod Sci. doi:10.1515/jogs-2015-0007

    Google Scholar 

  • Stokes GG (1849) On the variation of gravity at the surface of the Earth. Trans Cambr Philos Soc 8:672–695

    Google Scholar 

  • Tscherning CC, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. Technical Report 208, The Ohio State University

  • Ulotu P (2009) Geoid model of Tanzania from sparse and varying gravity data density by the KTH method. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm

  • Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the combined solution for the geoid. J Geod 72(12):684–697. doi:10.1007/s001900050209

    Article  Google Scholar 

  • Vaniček P, Kleusberg A (1987) The Canadian geoid-stokesian approach. Manuscr Geod 12:86–98

    Google Scholar 

  • Vaníček P, Sjöberg LE (1991) Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels. J Geophys Res Solid Earth 96(B4):6529–6539. doi:10.1029/90JB02782

    Article  Google Scholar 

  • Vanícek P, Changyou Z, Sjöberg LE (1992) A comparison of Stokes’s and Hotine’s approaches to geoid computation. Manuscr Geod 17:29–35

    Google Scholar 

  • Vaníček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE (1995) Higher-degree reference field in the generalized Stokes–Helmert scheme for geoid computation. J Geod 70(3):176–182. doi:10.1007/BF00943693

    Article  Google Scholar 

  • Wenzel HG (1983) Geoid computation by least squares spectral combination using integral kernels. In: Proceedings of the international association of geodesy general meeting, Tokyo, pp 438–453

  • Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. Eos Trans Am Geophys Union 94(45):409–410. doi:10.1002/2013EO450001

    Article  Google Scholar 

  • Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J R Astron Soc 18(1):81–91. doi:10.1111/j.1365-246X.1969.tb00264.x

    Article  Google Scholar 

  • Yildiz H, Forsberg R, Ågren J, Tscherning C, Sjöberg L (2012) Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geod Sci 2(1):53–64. doi:10.2478/v10156-011-0024-9

    Google Scholar 

  • Zhang C (1998) Estimation of dynamic ocean topography in the Gulf Stream area using the Hotine formula and altimetry data. J Geod 72(9):499–510. doi:10.1007/s001900050189

    Article  Google Scholar 

Download references

Acknowledgements

The Nordic Geodetic Commission (NKG) is thanked for making this study possible. Authors from Tallinn University of Technology have been co-financed by a Connecting Europe Facility (CEF) project “FAMOS (Finalising Surveys for the Baltic Motorways of the Sea) Odin” (VEU16013). The figures have been generated using GMT (Wessel et al. 2013). Three anonymous reviewers and the editor are thanked for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silja Märdla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Märdla, S., Ellmann, A., Ågren, J. et al. Regional geoid computation by least squares modified Hotine’s formula with additive corrections. J Geod 92, 253–270 (2018). https://doi.org/10.1007/s00190-017-1061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1061-7

Keywords

Navigation