Skip to main content
Log in

Precise station positions from VLBI observations to satellites: a simulation study

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Very long baseline interferometry (VLBI) tracking of satellites is a topic of increasing interest for the establishment of space ties. This shall strengthen the connection of the various space geodetic techniques that contribute to the International Terrestrial Reference Frame. The concept of observing near-Earth satellites demands research on possible observing strategies. In this paper, we introduce this concept and discuss its possible benefits for improving future realizations of the International Terrestrial Reference System. Using simulated observations, we develop possible observing strategies that allow the determination of radio telescope positions in the satellite system on Earth with accuracies of a few millimeters up to 1–2 cm for weekly station coordinates. This is shown for satellites with orbital heights between 2,000 and 6,000 km, observed by dense regional as well as by global VLBI-networks. The number of observations, as mainly determined by the satellite orbit and the observation interval, is identified as the most critical parameter that affects the expected accuracies. For observations of global positioning system satellites, we propose the combination with classical VLBI to radio sources or a multi-satellite strategy. Both approaches allow station position repeatabilities of a few millimeters for weekly solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://iag.geo.tuwien.ac.at.

  2. MicroGEM is a feasibility study for future GNSS-remote sensing satellites of the GeoForschungsZentrum (GFZ) Potsdam. The concept, that in the meanwhile has been prolonged under the names “NanoGEM” and “NanoX”, also includes a VLBI transmitter aboard the satellite.

  3. The discussion of IVS WG 1 is available at: http://ivscc.gsfc.nasa.gov/about/wg/wg1.

  4. V. Tornatore, personal communication.

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473

    Article  Google Scholar 

  • Bar-Sever Y, Haines B, Bertiger W, Desai S, Wu S (2009) Geodetic Reference Antenna in Space (GRASP)—a mission to enhance space-based geodesy. In: COSPAR colloquium: scientific and fundamental aspects of the Galileo program, Padua, 2009

  • Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI Software VieVS. In: Proceedings of the 2009 IAG symposium, Buenos Aires, Argentina, vol 136. International Association of Geodesy Symposia

  • Brieß K, Konemann G, Wickert J (2009) MicroGEM—microsatellites for GNSS Earth Monitoring, Abschlussbericht Phase 0/A. Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum GFZ and Technische Universität Berlin

  • Counselman C, Gourevitch SA (1981) Miniature interferometer terminals for earth surveying: ambiguity and multipath with global positioning system. IEEE Trans Geosci Remote Sens GE 19(4):244–252

    Google Scholar 

  • Dickey JM (2010) How and why do VLBI on GPS. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2010 general meeting proceedings, pp 65–69. NASA/CP 2010–215864

  • Duev DA, Molera Calvés G, Pogrebenko SV, Gurvits LI, Cim G, Bocanegra Bahamon T (2012) Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron Astrophys 541:A43. doi:10.1051/0004-6361/201218,885

  • Hanada H, Iwata T, Namiki N, Kawano N, Asari K, Ishikawa T, Kikuchi F, Liu Q, Matsumoto K, Noda H, Tsuruta S, Goossens S, Iwadate K, Kameya O, Tamura Y, Hong X, Ping J, Aili Y, Ellingsen S, Schlüter W (2008) VLBI for better gravimetry in SELENE. Adv Space Res 42:341–346

    Article  Google Scholar 

  • Hase H (1999) Phase centre determinations at GPS-satellites with VLBI. In: Schlüter W, Hase H (eds) Proceedings of the 13th working meeting of the European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Wettzell, pp 273–277, held at Viechtach

  • Hase H, Behrend D, Ma C, Petrachenko B, Schuh H, Whitney A (2013) The emerging VGOS network of the IVS. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2012 general meeting proceedings, pp 8–12. NASA/CP-2012-217504

  • Huang Y, Hu X, Huang C, Jiang D, Zheng W, Zhang X (2006) Orbit determination of satellite “Tance 1” with VLBI data. Chin Astron Astrophys 30:318–329

    Article  Google Scholar 

  • Huang Y, Hu X, Zhang X, Jiang D, Guo R, Wang H, Shi S (2011) Improvement of orbit determination for geostationary satellites with VLBI tracking. Chin Sci Bull 56:2765–2772

    Article  Google Scholar 

  • Klioner SA (1991) General relativistic model of VLBI observables. In: Proceedings of the AGU Chapman conference on geodetic VLBI: monitoring global change, pp 188–202. NOAA Technical Report NOS 137 NGS 49

  • Kwak Y, Gotoh T, Amagai J, Takiguchi H, Sekido M, Ichikawa R, Sasao T, Cho J, Kim T (2010) The first experiment with VLBI-GPS hybrid system. In: Behrend D, Baver K (eds) International VLBI service for geodesy and astrometry 2010 general meeting proceedings, pp 330–334. NASA/CP 2010–215864

  • Lanyi G, Bagri DS, Border JS (2007) Angular position determination of spacecraft by radio interferometry. Proc IEEE 95:11

    Article  Google Scholar 

  • Lebreton JP, Witasse O, Sollazzo C, Blancquaert T, Couzin P, Schipper AM, Jones JB, Matson DL, Gurvits LI, Atkinson DH, Kazeminejad B, Pérez-Ayúcar M (2005) An overview of the descent and landing of the Huygens probe onTitan. Nature 438(8):758–764. doi:10.1038/nature04347

    Article  Google Scholar 

  • MacMillan DS, Ma C (1994) Evaluation of very long baseline interferometry atmospheric modeling improvements. J Geophys Res 99(B1):637–651

    Article  Google Scholar 

  • Moya Espinosa M, Haas R (2007) SATTRACK a satellite tracking module for the VLBI field system. In: Böhm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, Vienna, vol 79, pp 53–58. Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380

  • Moyer TD (2003) Formulation for observed and computed values of deep space network data types for navigation. In: Yuen JH (ed) JPL deep space communications and navigation series. Wiley, New York, ISBN: 0-471-44535-5

  • Niell AE (2007) Simulation networks-1. IVS Memorandum 2007-001v01. ftp://ivscc.gsfc.nasa.gov/-pub/memos/ivs-2007-001v01.pdf

  • Nilsson T, Haas R, Elgered G (2007) Simulations of atmospheric path delays using turbulence models. In: Böhm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Vienna, vol 79, pp 175–180. Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380

  • Pany A, Böhm J, MacMillan DS, Schuh H, Nilsson T, Wresnik J (2010) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geod 85(1):39–50

    Google Scholar 

  • Petrachenko B, Niell A, Behrend D, Corey B, Böhm J, Charlot P, Collioud A, Gipson J, Haas R, Hobiger T, Koyama Y, MacMillan D, Malkin Z, Nilsson T, Pany A, Tuccari G, Whitney A, Wresnik J (2009) Progress report of the IVS VLBI2010 committee: design aspects of the VLBI2010 system. NASA/TM-2009-214180. ftp://ivscc.gsfc.nasa.gov/pub/misc/V2C/TM2009-214180.pdf

  • Preston RA, Ergas R, Hinteregger HF, Knight CA, Robertson DS, Shapiro II, Whitney AR, Rogers AEE, Clark TA (1972) Interferometric observations of an artificial satellite. Science 178–4059:407–409

    Article  Google Scholar 

  • Rosenbaum B (1972) The VLBI time delay function for synchronous orbits. NASA/TM-X-66122 GSFC

  • Sarti P, Abbondanza C, Petrov L, Negusini M (2011) Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis. J Geod 85:1–8. doi:10.1007/s00190-010-0410-6

    Article  Google Scholar 

  • Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80

    Article  Google Scholar 

  • Seitz M, Angermann D, Bloßfeld M, Drewes H, Gerstl M (2012) The 2008 DGFI realization of the ITRS: DTRF2008. J Geod 86(12):1097–1123

    Article  Google Scholar 

  • Sun J (2013) VLBI scheduling strategies with respect to VLBI2010. Dissertation, Geowissenschaftliche Mitteilungen 92, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811–8380

  • Sun J, Böhm J, Nilsson T, Krásná H, Böhm S, Schuh H (2014) New VLBI2010 scheduling strategies and implications on the terrestrial reference frames. J Geod. doi:10.1007/s00190-014-0697-9 (in press)

  • Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85:257–272

    Article  Google Scholar 

  • Tornatore V, Haas R (2009) Considerations on the observation of GNSS-signals with the VLBI2010 system. In: Bourda G, Charlot P, Collioud A (eds) Proceedings of the 19th European VLBI for geodesy and astrometry working meeting. Université Bordeaux 1-CNRS Observatoire Aquitain des Sciences de l’Univers Laboratoire d’Astrophysique de Bordeaux, pp 151–155, Bordeaux

  • Tornatore V, Haas R, Duev D, Pogrebenko S, Casey S, Molera Calvés G (2011) Determination of GLONASS satellite coordinates with respect to natural radio sources using the VLBI technique: preliminary results. In: Association Astronautique et Aéronautique de France e SEE (Société de l’Electricité, de l’Electronique et des Technologies del’Information et de la Communication) (ed) ETTC2011, European test and telemetry conference, Toulouse. http://publications.lib.chalmers.se/records/fulltext/local_-150623.pdf

Download references

Acknowledgments

The presented research was done within project D-VLBI (SCHU 1103/4-1) as part of the DFG Research Unit Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space funded by the German Research Foundation (FOR 1503). We kindly acknowledge four anonymous reviewers for their useful and detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Plank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plank, L., Böhm, J. & Schuh, H. Precise station positions from VLBI observations to satellites: a simulation study. J Geod 88, 659–673 (2014). https://doi.org/10.1007/s00190-014-0712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0712-1

Keywords

Navigation