Skip to main content
Log in

Combination of GNSS and SLR observations using satellite co-locations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and allows the estimation of SLR station coordinates at the level of 1–2 cm. The SLR observations to GNSS satellites provide the scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119 mm and −13 mm on average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in the range of a few centimeters up to 5 cm. Scale differences of 0.9 ppb are seen between GNSS and SLR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112(B9): 401ff. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Appleby G, Otsubo T (2000) Comparison of SLR measurements and orbits with GLONASS and GPS microwave orbits. In: Proceedings of the 12th international workshop on laser ranging, Matera, Italy

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service (IGS): theory and initial results. Manuscr Geod 19: 367–386

    Google Scholar 

  • Brockmann E (1997) Combination of solutions for geodetic and geodynamic applications of the global positioning system (GPS). Geod Geophys Arb in der Schweiz 55, Zürich, Switzerland

  • Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112: B12403. doi:10.1029/2007JB004933

    Article  Google Scholar 

  • Collilieux X, Altamimi Z (2009) Impact of the network effect on the origin and scale: case study of satellite laser ranging. In: Sideris M (ed) Observing our changing earth. Proceedings of the 2007 IAG general assembly, Perugia, Italy. IAG Symp 133:31–38

  • Coulot D, Berio P, Bonnefond P, Exertier P, Feraudy D, Laurain O, Deleflie F (2009) Satellite laser ranging biases and terrestrial reference frame scale factor. In: Sideris M (ed) Observing our changing earth. Proceedings of the 2007 IAG General Assembly, Perugia, Italy. IAG Symp 133:39–46

  • Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4): 353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, Steigenberger P, Wübbena G, Beutler G (2010) Improved antenna phase center models for GLONASS. GPS Sol. doi:10.1007/s10291-010-0169-5

  • Dell’Agnello S, Delle Monache GO, Currie DG, Vittori R, Cantone C, Garattini M, Boni A, Martini M, Lops C, Intaglietta N, Tauraso R, Arnold DA, Pearlman MR, Bianco G, Zerbini S, Maiello M, Berardi S, Porcelli L, Alley CO, McGarry JF, Sciarretta C, Luceri V, Zagwodzki TW (2010) Creation of the new industry-standard space test of laser retroreflectors for the GNSS. Adv Space Res (Accepted for publication). doi:10.1016/j.asr.2010.10.022

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Eanes R, Nerem R, Abusali P, Bamfort W, Key K, Ries J, Schutz B (2000) GLONASS orbit determination at the Center for Space Research. In: Slater J, Noll C, Gowey K (eds) Proceedings of the international GLONASS experiment (IGEX-98) Workshop, IGS, Jet Propulsion Laboratory

  • Flohrer C (2008) Mutual validation of satellite-geodetic techniques and its impact on GNSS orbit modeling. Geod. Geophys. Arb. in der Schweiz 75, Zürich, Switzerland. ISBN: 978-3-908440-19-2

  • Ge M, Gendt G, Dick G, Zhang F, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32: L06310. doi:10.1029/2004GL022224

    Article  Google Scholar 

  • Gurtner W (2009) ILRS combined range bias report (sent weekly via slrmail)

  • Krügel M, Angermann D (2005) Analysis of local ties from multi-year solutions of different techniques. In: Richter B, Dick W, Schwegmann W (eds) Proceedings of the IERS workshop on site co-locations, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, IERS technical note, no. 33

  • Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46(12): 1513–1540. doi:10.1016/j.asr.2010.05.007

    Article  Google Scholar 

  • Otsubo T, Apleby G, Gibbs P (2001) GLONASS laser ranging accuracy with satellite signature effect. Surv Geophys 22: 509–516

    Article  Google Scholar 

  • Pavlis E (1995) Comparison of GPS s/c orbits determined from GPS and SLR tracking data. Adv Space Res 16(12): 1255–1258. doi:10.1016/0273-1177(95)98780-R

    Article  Google Scholar 

  • Pearlman MR (2009) Technology challenges for SLR ranging to GNSS satellites. In: Pavlis E (ed) International technical laser workshop on SLR tracking of GNSS constellations, position papers

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 125–143

    Article  Google Scholar 

  • Rothacher M (2003) Towards a rigorous combination of space geodetic techniques. In: Richter B, Schwegmann W, Dick W (eds) Proceedings of the IERS workshop on combination research and global geophysical fluids. IERS technical note, No. 30, Bundesamt für Kartographie und Geodäsie, Frankfurt am Main

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Seitz M, Angermann D, Blossfeld M, Gerstl M, Heinkelmann R, Kelm R, Müller H (2010) Die Berechnung des Internationalen Terrestrischen Referenzrahmens ITRF2008 am DGFI. zfv 135(2): 73–79

    Google Scholar 

  • Springer T (2000) Modelling and validating orbits and clocks using the global positioning system. Geod Geophys Arb in der Schweiz 60, Zürich, Switzerland

  • Thaller D (2008) Inter-technique combination based on homogeneous normal equation systems including station coordinates, earth orientation and troposphere parameters. Scientific technical report STR08/15, Deutsches GeoForschungsZentrum Potsdam, Germany

  • Thaller D, Mareyen M, Dach R, Gurtner W, Beutler G, Richter B, Ihde J (2009) Preparing the bernese GPS software for the analysis of SLR observations to geodetic satellites. In: Schillak S (ed) Proceedings of the 16th international workshop on laser ranging, Space Research Center, Polish Academy of Sciences, Poznan

  • Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10): 1515–1523. doi:10.1016/j.asr.2007.01.038

    Article  Google Scholar 

  • Zhu S, Reigber C, Khang Z (1997) Apropos laser tracking to GPS satellites. J Geod 71(7): 423–432. doi:10.1007/s00190-0050110

    Article  Google Scholar 

  • Zhu S, Massmann F, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12): 668–672. doi:10.1007/s00190-002-0294-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Thaller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaller, D., Dach, R., Seitz, M. et al. Combination of GNSS and SLR observations using satellite co-locations. J Geod 85, 257–272 (2011). https://doi.org/10.1007/s00190-010-0433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0433-z

Keywords

Navigation