Skip to main content
Log in

Differences in GPS coordinate time series resulting from the use of individual instead of type-mean antenna phase center calibration model

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

It is well-known that the phase center of a Global Navigation Satellite System (GNSS) antenna is not a stable point coinciding with a mechanical reference. The phase center position depends on the direction of the received signal, and is antenna-and signaldependent. Phase center corrections (PCC) models of GNSS antennas have been available for several years. The first method to create antenna PCC models was the relative field calibration procedure. Currently only absolute calibration models are generally recommended for use. In this study we investigate the differences between position estimates obtained using individual and type-mean absolute antenna calibrations in order to better understand how receiver antenna calibration models contribute to the Global Positioning System (GPS) positioning error budget. The station positions were estimated with two absolute calibration models: the igs08.atx model, which contains typemean calibration results, and individual antenna calibration models. Continuous GPS observations from selected Polish European Permanent Network (EPN) stations were used for these studies. The position time series were derived from the precise point positioning (PPP) technique using the NAPEOS scientific GNSS software package. The results show that the differences in the calibrations models propagate directly into the position domain, affecting daily as well sub-daily results. In daily solutions, the position offsets, resulting from the use of individual calibrations instead of type-mean igs08.atx calibrations, can reach up to 5 mm in the Up component, while in the horizontal one they generally stay below 1 mm. It was found that increasing the frequency of sub-daily coordinate solutions amplifies the effects of type-mean vs individual PCC-dependent differences, and also gives visible periodic variations in time series of GPS position differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allahverdi-Zadeh A., Asgari J. and Amiri-Simkooe A.R., 2016. Investigation of GPS draconitic year effect on GPS time series of eliminated eclipsing GPS satellite data. J. Geod. Sci., 6, 93–102.

    Google Scholar 

  • Baire Q., Pottiaux E., Bruyninx C., Defraigne P., Legrand J. and Bergoet N., 2011. Comparison of Receiver Antenna Calibration Models used in the EPN. (http://www.euref.eu/symposia/2011Chisinau/Symposium2011-Chisinau.html).

    Google Scholar 

  • Baire Q., Bruyninx C., Legrand J., Pottiaux E., Aerts W., Defraigne P., Bergeot N. and Chevalier J.M., 2013. Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solut., 18, 1–11.

    Google Scholar 

  • Boehm J., Heinkelmann R. and Schuh H., 2007 Short note: A global model of pressure and temperature for geodetic applications. J. Geodesy, 81, 679–683, DOI: 0.1007/s00190-007-0135-3.

    Article  Google Scholar 

  • Bosy J., Oruba A., Graszka W., Leonczyk M. and Ryczywolski M., 2008. ASG-EUPOS densification of EUREF Permanent Network on the territory of Poland. Reports on Geodesy, 2(85), 105–112.

    Google Scholar 

  • Braun J., Rocken C., Meertens C.M.and Johanson J., 1993. GPS antenna mixing and phase center corrections. Eos Trans. AGU, Fall Meeting Supplement: 197.

    Google Scholar 

  • Dawidowicz K., 2013. Impact of different GNSS antenna calibration models on height determination in the ASGEUPOS network: a case study. Surv. Rev., 45, 386–394, DOI: 10.1179/1752270613Y.0000000043.

    Article  Google Scholar 

  • Dawidowicz K., 2014. Phase center variations problem in GPS/GLONASS observations processing. In: D. Cygas and T. Tollazzi (Eds), The 9th International Conference Enviromental Engineering. Vilnius Gediminas Technical University Press Technika, Vilnius, Lithuania, DOI: 10.3846/enviro.2014.202.

    Google Scholar 

  • Dawidowicz K. and Krzan G., 2014. Accuracy of single receiver static GNSS measurements under conditions of limited satellite availability. Surv. Rev., 46, 278–287, DOI: 10.1179 /1752270613Y.0000000082.

    Article  Google Scholar 

  • Figurski M., Kaminski P., Kroszczynski K. and Szafranek K., 2009. ASG-EUPOS monitoring with reference to EPN. Artif. Sat., 44, 85–94.

    Google Scholar 

  • Geiger A., 1998. Modeling of phase center variation and its influence on GPS positioning. In: E. Groten and R. Strauss (Eds), GPS-Techniques Applied to Geodesy and Surveying. Lecture Notes in Earth Sciences, 19, 210–222, Springer-Verlag, Heidelberg, Germany.

    Article  Google Scholar 

  • Geng J., Teferle F.N., Shi C., Meng X., Dodson A.H. and Liu J., 2009. Ambiguity resolution in precise point positioning with hourly data. GPS Solut., 13, 263–270, DOI: 10.1007/s10291-009-0119-2.

    Article  Google Scholar 

  • Geng J., Meng X., Teferle F.N. and Dodson A.H., 2010. Performance of precise point positioning with ambiguity resolution for 1-to 4-hour observation periods. Surv. Rev., 42, 155–165.

    Article  Google Scholar 

  • Görres B., Campbell J., Becker M. and Siemes M., 2006. Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques. GPS Solut., 10, 136–145.

    Article  Google Scholar 

  • Hatzes A.P., 2016. The radial velocity method for the detection of exoplanets. In: Bozza V., Mancini L. and Sozzetti A. (Eds), Methods of Detecting Exoplanets. Springer International Publishing Switzerland, 3–86, DOI: 10.1007/978-3-319-27458-4_1.

    Chapter  Google Scholar 

  • Khoda O. and Bruyninx C., 2007. Switching from relative to absolute antenna phase centre variations in a regional network: stability of the coordinate differences. EUREF Symposium, June 4–6, 2007, London, U.K. (http://www.epncb.oma.be/_documentation/papers /eurefsymposium2007/switching_from_relative_to_absolute_APCV_in_a_regional_network_ stability_of_the_coordinate_differences.pdf).

    Google Scholar 

  • IGSMAIL-6354}. Upcoming switch to IGS08/igs08.atx (https://igscb.jpl.nasa.gov/pipermail/igsmail/2011/006346.html)

  • King M.A. and Watson C.S., 2010. Long GPS coordinate time series: Multipath and geometry effects. J. Geophys. Res., 115, B04403, DOI: 10.1029/2009JB006543.

    Article  Google Scholar 

  • Kouba J. and Héroux P., 2001. Precise point positioning using IGS orbit and clock products. GPS Solut., 5, 12–28.

    Article  Google Scholar 

  • Lyard L., Lefevre L., Letellier T. and Francis O., 2006. Modelling the global ocean tides: insights from FES2004. Ocean Dyn., 56, 394–415.

    Article  Google Scholar 

  • Mader G.L., 1999. GPS antenna calibration at the National Geodetic Survey. GPS Solut., 3, 50–58.

    Article  Google Scholar 

  • Rizos Ch., Janssen V., Roberts C. and Grinter T., 2012. Precise point positioning: Is the era of differential GNSS positioning drawing to an end? FIG Working Week 2012, Rome, Italy, May 6–10, 2012 (https://www.researchgate.net/publication/277997482_Precise_Point_Positioning _Is_the_era_of_differential_GNSS_positioning_drawing_to_an_end).

    Google Scholar 

  • Rothacher M. and Mader G., 1996. Combination of antenna phase center offsets and variation: antenna calibration set IGS_01 (ftp://igscb.jpl.nasa.gov/pub/station/general/igs_01.txt).

    Google Scholar 

  • Scargle J.D., 1982. Studies in astronomical time series analysis. Astrophys. J., 263, 835–853.

    Article  Google Scholar 

  • Schmid R. and Rothacher M., 2003. Estimation of elevation–dependent satellite antenna phase center variations of GPS satellites. J. Geodesy, 77, 440–446, DOI: 10.1007/s00190-003-0339-0.

    Article  Google Scholar 

  • Schmid R., Mader G. and Herring T., 2004. From relative to absolute antenna phase center corrections. In: Meindl M. (Ed.), IGS Workshop & Symposium 2004. Astronomical Institute, University of Berne, Berne, Switzerland (ftp://igscb.jpl.nasa.gov/pub/resource/pubs /04_rtberne/cdrom/Session10/10_0_Mader.pdf).

    Google Scholar 

  • Schmid R., Steingerberg P. and Rotchacher M., 2005. Benefits from absolute GPS antenna phase center modeling. Advances in GPS Data Processing and Modelling, London, 9–10 November 2015 (www.espace-tum.de/ mediadb/15354/15355/Vortrag_London.pdf).

    Google Scholar 

  • Schmid R., Steingerberg P., Gendt G., Ge M. and Rotchacher M., 2007. Generation of a consistent absolute phase center corrections model for GPS receiver and satellite antennas. J. Geodesy, 81, 781–798.

    Article  Google Scholar 

  • Schmitz M., Wübbena G. and Boettcher G., 2002. Tests of phase center variations of various GPS antennas, and some results. GPS Solut., 6, 18–27.

    Article  Google Scholar 

  • Schön S. and Kersten T., 2014. Comparing antenna phase center corrections: challenges, concepts and perspectives. IGS Analysis Workshop, June 23.-27. 2014, Pasadena, CA (http://www.academia.edu/8806584/Comparing_antenna_phase_center_corrections_challleng es_concepts_and_perspectives).

    Google Scholar 

  • Schupler B.R. and Clark T.A., 1991. How different antennas affect the GPS observables. GPS World, November/December 1991, 32–36.

    Google Scholar 

  • Schupler B.R., Allshouse R.L. and Clark T.A., 1994. Signal characteristics of GPS user antennas. Navigation, 41, 277–295.

    Article  Google Scholar 

  • Sidorov D. and Teferle F.N., 2013. Antenna phase centre calibration effects on position time-series: preliminary results. IAG Scientific Assembly, IAG 150 Years, Potsdam, Germany, September 1–6, 2013 (https://orbilu.uni.lu/bitstream/10993/5512/1/Poster_IAG2013.pdf).

    Google Scholar 

  • Springer T.A., 2009. NAPEOS -Mathematical Models and Algorithms. Technical Note. DOPSSYS-TN-0100-OPS-GN. European Space Operation Centre, European Space Agency, Darmstadt, Germany (http://hpiers.obspm.fr/combinaison/documentation/articles /NAPEOS_MathModels_Algorithms.pdf).

    Google Scholar 

  • Townsend R.H.D., 2010. Fast calculation of Lomb-Scargle periodogram using graphics processing units. Astron. J., 191, 247–253.

    Google Scholar 

  • Tregoning P. and Watson C., 2009. Atmospheric effects and spurious signals in GPS analyses. J. Geophys. Res., 114, B09403, DOI:10.1029/2009JB006344.

    Google Scholar 

  • Wanninger L., 2009. Correction of apparent position shifts caused by GNSS antenna changes. GPS Solut., 13, 133–139.

    Article  Google Scholar 

  • Wübbena G., Menge F., Schmitz M., Seeber G. and Völksen C., 1997. A new approach for field calibration of absolute GPS antenna phase center variations. Navigation, 44, 247–255, DOI: 10.1002/j.2161-4296.1997.tb02346.x.

    Article  Google Scholar 

  • Wübbena G., Schmitz M., Boettcher G. and Schumann C., 2006. Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. The International GNSS Service (IGS): Perspectives and Visions for 2010 and beyond. 8–12 May 2006, Darmstadt, Germany (http://www.geopp.de/media/docs/pdf/gppigs06_pabs_g.pdf).

    Google Scholar 

  • Zeimetz P. and Kuhlman H., 2008. On the accuracy of absolute GNSS antenna calibration and the conception of a new anechoic chamber. FIG Working Week 2008. Stockholm, Sweden 14–19 June 2008 (www.gkgm.de/app/download/1375983/2008_zeimetz_kuhlmann.pdf).

    Google Scholar 

  • Zhu S.Y., Massmann F.-H., Yu Y. and Reigber C., 2003. Satellite antenna phase center offsets and scale errors in GPS solutions. J. Geodesy, 76, 668–672.

    Article  Google Scholar 

  • Zumberge J.F., Heflin M.B., Jefferson D.C., Watkins M.M. and Webb F.H., 1997. Precise Point Positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102, 5005–5017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Dawidowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawidowicz, K. Differences in GPS coordinate time series resulting from the use of individual instead of type-mean antenna phase center calibration model. Stud Geophys Geod 62, 38–56 (2018). https://doi.org/10.1007/s11200-016-0630-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0630-1

Keywords

Navigation