Skip to main content

Advertisement

Log in

Application of sophisticated sensors to advance the monitoring of machining processes: analysis and holistic review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Response measurement of various functionality states of machines is an inevitable part of smooth production. An effectively efficient measurement and control system of the machinery helps the inspection engineers to detect failures. In the recent age, the concept of industry 5.0, which focuses on the interaction between humans and machines, has increased the importance of sensors in the industry. Various sensing devices may aid and support the machining process, making it more efficient. These sensing devices support machine tools and enhance productivity by reducing failures. The application of an online monitoring system that includes vibration measurement and tool wear measurement, and the electrical energy consumption is getting fame in industry and academia. This paper mainly presents a holistic review of various sensors and their application in the manufacturing processes. Advancements in the sensor for quality measurement, cutting force measurement, and tool wear measurement are discussed. Furthermore, the adoption of the Internet of Things (IoT) in machining processes and conversion of conventional manufacturing processes into modern digitalized systems are discussed. Recent trends of research to improve the sensor technology have been improved. This study provides fundamental guidelines for using and adopting the various types of sensors in machining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mehdian M, Rahnejat H (1987) A tactile sensor with automatic learning capability for industrial parts inspection. Int J Adv Manuf Technol 2:11–26. https://doi.org/10.1007/BF02601490

    Article  Google Scholar 

  2. Tsabourakis N, Ristic M, Besant CB (1988) Development of a profile gauging sensor. Int J Adv Manuf Technol 3:51–66. https://doi.org/10.1007/BF02601612

    Article  Google Scholar 

  3. Benhadj R, Sadeque S, Rahnejat H (1988) A knowledge-based system for sensor interaction and real-time component control. Int J Adv Manuf Technol 3:77–102. https://doi.org/10.1007/BF02601503

    Article  Google Scholar 

  4. Jemielniak K (1999) Commercial tool condition monitoring systems. Int J Adv Manuf Technol. 15(10):711–721. https://doi.org/10.1007/s001700050123

    Article  Google Scholar 

  5. Niu YYM, Wong YS, Hong GS (1998) An intelligent sensor system approach for reliable tool flank wear recognition. Int J Adv Manuf Technol 14:77–84. https://doi.org/10.1007/BF01322215

    Article  Google Scholar 

  6. Gao J, Sun H, Han J, Sun Q, Zhong T (2022) Research on recognition method of electrical components based on FEYOLOv4-tiny. J Electrical Eng and Technol. 17:3541–3551. https://doi.org/10.1007/s42835-022-01124-0

    Article  Google Scholar 

  7. Yu J, Lu L, Chen Y, Zhu Y, Kong L (2021) An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans Mobile Comput 20(2):337–351. https://doi.org/10.1109/TMC.2019.2947468

    Article  Google Scholar 

  8. Zhao S, Li F, Li H, Lu R, Ren S, Bao, H.,… Han, S. (2021) Smart and practical privacy-preserving data aggregation for fog-based smart grids. IEEE Trans Inf Forensic Secur 16:521–536. https://doi.org/10.1109/TIFS.2020.3014487

    Article  Google Scholar 

  9. Haschenburger A, Menke N, Stüve J (2021) Sensor-based leakage detection in vacuum bagging. Int J Adv Manuf Technol 116:2413–2424. https://doi.org/10.1007/s00170-021-07505-5

    Article  Google Scholar 

  10. Liu Y, Zhang J, Hu X, Sun S (2022) Sensor data anomaly detection and correction for improving the life prediction of cutting tools in the slot milling process. Int J Adv Manuf Technol 119:463–475. https://doi.org/10.1007/s00170-021-08275-w

    Article  Google Scholar 

  11. Rizal M, Ghani JA, Nuawi MZ, Haron CHC (2018) An embedded multi-sensor system on the rotating dynamometer for real-time condition monitoring in milling. Int J Adv Manuf Technol 95:811–823. https://doi.org/10.1007/s00170-017-1251-8

    Article  Google Scholar 

  12. Yoneyama T (2017) Development of a friction sensor for hot forging. Int J Adv Manuf Technol 90:2251–2261. https://doi.org/10.1007/s00170-016-9539-7

    Article  Google Scholar 

  13. Zhang X, Lu X, Li W, Wang S (2021) Prediction of the remaining useful life of cutting tool using the Hurst exponent and CNN-LSTM. Int J Adv Manuf Technol 112:2277–2299. https://doi.org/10.1007/s00170-020-06447-8

    Article  Google Scholar 

  14. Byrne G, Dornfeld D, Inasaki I et al (1995) Tool Condition Monitoring (TCM) - the status of research and industrial application. CIRP Ann - Manuf Technol. 44:541–567. https://doi.org/10.1016/S0007-8506(07)60503-4

    Article  Google Scholar 

  15. Fu X, Pace P, Aloi G et al (2020) Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm. Comput Networks 177:107327. https://doi.org/10.1016/j.comnet.2020.107327

    Article  Google Scholar 

  16. Abrishambaf R, Hashemipour M, Bal M (2013) Structural modeling of industrial wireless sensor and actuator networks for reconfigurable mechatronic systems. Int J Adv Manuf Technol 64:793–811. https://doi.org/10.1007/s00170-012-4070-y

    Article  Google Scholar 

  17. Li X (2001) Real-time prediction of workpiece errors for a CNC turning centre, Part 3. Cutting force estimation using current sensors. Int J Adv Manuf Technol 17:659–664. https://doi.org/10.1007/s001700170130

    Article  Google Scholar 

  18. Lee JM, Choi DK, Kim J, Chu CN (1995) Real-time tool breakage monitoring for NC milling process. CIRP Ann - Manuf Technol. 44:59–62. https://doi.org/10.1016/S0007-8506(07)62275-6

    Article  Google Scholar 

  19. Sarhan AAD (2014) Investigate the spindle errors motions from thermal change for high-precision CNC machining capability. Int J Adv Manuf Technol 70:957–963. https://doi.org/10.1007/s00170-013-5339-5

    Article  Google Scholar 

  20. Siddhpura A, Paurobally R (2013) A review of flank wear prediction methods for tool condition monitoring in a turning process. Int J Adv Manuf Technol 65:371–393. https://doi.org/10.1007/s00170-012-4177-1

    Article  Google Scholar 

  21. Stoney R, O’Donnell GE, Geraghty D (2013) Dynamic wireless passive strain measurement in CNC turning using surface acoustic wave sensors. Int J Adv Manuf Technol 69:1421–1430. https://doi.org/10.1007/s00170-013-5116-5

    Article  Google Scholar 

  22. Lu C, Zhou H, Yang A, Xu C, Xu C, Ou Z et al (2007) Split-core magnetoelectric current sensor and wireless current measurement application. Measurement 188:110527. https://doi.org/10.1016/j.measurement.2021.110527

  23. Jiang X, Scott PJ, Whitehouse DJ, Blunt L (2007) Paradigm shifts in surface metrology. Part II. The current shift. Proc R Soc A Math Phys Eng Sci 463(2085):2071–2099

    Google Scholar 

  24. Estler WT, Phillips SD, Borchardt B et al (1999) Practical aspects of touch-trigger probe error compensation. Comput Stand Interfaces. 21:1–17. https://doi.org/10.1016/s0920-5489(99)92242-0

    Article  Google Scholar 

  25. Shen YL, Zhang X (1999) Pretravel compensation for horizontally oriented touch trigger probes with straight styli. J Manuf Syst. 18:175–186. https://doi.org/10.1016/S0278-6125(99)80030-2

    Article  Google Scholar 

  26. Hsiao K, Nangeroni P, Huber M, Saxena A, Ng AY (2009) Reactive grasping using optical proximity sensors. In 2009 IEEE International Conference on Robotics and Automation. IEEE, pp 2098–2105

  27. Johnson D (2007) Proximity sensors. Control Eng. https://doi.org/10.1007/978-94-011-2730-1_4

  28. Wang CT, Huang KY, Lin DTW et al (2010) A flexible proximity sensor fully fabricated by inkjet printing. Sensors. 10:5054–5062. https://doi.org/10.3390/s100505054

    Article  Google Scholar 

  29. Li KM, Chang CW, Chang CH (2022) Online cutting temperature prediction using ink-jet printed sensors and model order reduction method. Int J Adv Manuf Technol 120:1989–2002. https://doi.org/10.1007/s00170-022-08900-2

    Article  Google Scholar 

  30. Zhang X, Wang S, Li W, Lu X (2021) Heterogeneous sensors-based feature optimisation and deep learning for tool wear prediction. Int J Adv Manuf Technol 114:2651–2675. https://doi.org/10.1007/s00170-021-07021-6

    Article  Google Scholar 

  31. Cho S, Binsaeid S, Asfour S (2010) Design of multisensor fusion-based tool condition monitoring system in end milling. Int J Adv Manuf Technol. 46:681–694. https://doi.org/10.1007/s00170-009-2110-z

    Article  Google Scholar 

  32. Downey J, O’Sullivan D, Nejmen M, Bombinski S, O’Leary P, Raghavendra R, Jemielniak K (2016) Real time monitoring of the CNC process in a production environment- the Data Collection & Analysis Phase. Procedia CIRP 41:920–926

  33. Altintas Y, Automation M (2000) Metal cutting mechanics, machine tool vibrations, and CNC design. Manufacturing Automation 56–64

  34. Fu X, Yao H, Yang Y (2019) Modeling and analyzing cascading dynamics of the clustered wireless sensor network. Reliab Eng Syst Saf 186:1–10. https://doi.org/10.1016/j.ress.2019.02.009

    Article  Google Scholar 

  35. Bombiński S, Błazejak K, Nejman M, Jemielniak K (2016) Sensor signal segmentation for tool condition monitoring. Procedia CIRP 46:155–160

    Google Scholar 

  36. Du Y, Qin B, Zhao C, Zhu Y, Cao J et al (2021) A novel spatio-temporal synchronization method of roadside asynchronous MMW radar-camera for sensor fusion. IEEE Trans Intell Transpo Syst 1-12. https://doi.org/10.1109/TITS.2021.3119079

  37. Zhou G, Zhang R, Huang S (2021) Generalized buffering algorithm. IEEE Access 9:27140–27157. https://doi.org/10.1109/ACCESS.2021.3057719

    Article  Google Scholar 

  38. Kara F, Aslantaş K, Çiçek A (2016) Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Appl Soft Comput J. 38:64–74. https://doi.org/10.1016/j.asoc.2015.09.034

    Article  Google Scholar 

  39. Karkalos NE, Galanis NI, Markopoulos AP (2016) Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques. Meas J Int Meas Confed. 90:25–35. https://doi.org/10.1016/j.measurement.2016.04.039

    Article  Google Scholar 

  40. Elangovan M, Sugumaran V, Ramachandran KI, Ravikumar S (2011) Effect of SVM kernel functions on classification of vibration signals of a single point cutting tool. Expert Syst Appl. 38:15202–15207. https://doi.org/10.1016/j.eswa.2011.05.081

    Article  Google Scholar 

  41. Jantunen E (2002) A summary of methods applied to tool condition monitoring in drilling. Int J Mach Tools Manuf 42:997–1010. https://doi.org/10.1016/S0890-6955(02)00040-8

    Article  Google Scholar 

  42. Article O (2021) Sensor-integrated tap holder for process uncertainty detection, pp 1905–1914

    Google Scholar 

  43. Kuntoğlu M, Salur E, Gupta MK et al (2021) A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. Int J Adv Manuf Technol 116:2711–2735. https://doi.org/10.1007/s00170-021-07425-4

    Article  Google Scholar 

  44. Chen JC, Guo G, Wang WN (2020) Artificial neural network-based online defect detection system with in-mold temperature and pressure sensors for high precision injection molding. Int J Adv Manuf Technol 110:2023–2033. https://doi.org/10.1007/s00170-020-06011-4

    Article  Google Scholar 

  45. Sahu SK, Pal K, Mahto RP, Dash P (2019) Monitoring of friction stir welding for dissimilar Al 6063 alloy to polypropylene using sensor signals. Int J Adv Manuf Technol 104:159–177. https://doi.org/10.1007/s00170-019-03855-3

    Article  Google Scholar 

  46. Lv Z, Kumar N (2020) Software defined solutions for sensors in 6G/IoE. Comput Commun 153:42–47. https://doi.org/10.1016/j.comcom.2020.01.060

    Article  Google Scholar 

  47. Sansoni G, Trebeschi M, Docchio F (2009) State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9:568–601

    Article  Google Scholar 

  48. Kong H, Lu L, Yu J, Chen Y, Tang F (2021) Continuous authentication through finger gesture interaction for smart homes using WiFi. IEEE Trans Mobile Comput 20(11):3148–3162. https://doi.org/10.1109/TMC.2020.2994955

    Article  Google Scholar 

  49. Kuntoğlu M, Aslan A, Sağlam H et al (2020) Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of aisi 5140. Sensors (Switzerland). 20:4377. https://doi.org/10.3390/s20164377

    Article  Google Scholar 

  50. Mitrofanov A, Parsheva K, Nosenko V (2020) Simulation of an artificial neural network for predicting temperature and cutting force during grinding using CAMQL. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.08.139

  51. Kim D, Jeon D (2011) Fuzzy-logic control of cutting forces in CNC milling processes using motor currents as indirect force sensors. Precis Eng. https://doi.org/10.1016/j.precisioneng.2010.09.001

  52. Teti R, Jawahir IS, Jemielniak K et al (2006) Chip form monitoring through advanced processing of cutting force sensor signals. CIRP Ann - Manuf Technol. https://doi.org/10.1016/S0007-8506(07)60370-9

  53. Yameogo D, Haddag B, Makich H, Nouari M (2017) Prediction of the cutting forces and chip morphology when machining the Ti6Al4V alloy using a microstructural coupled model. Procedia CIRP 58:335–340

  54. Tiwari K, Shaik A, Arunachalam N (2018) Tool wear prediction in end milling of Ti-6Al-4V through Kalman filter based fusion of texture features and cutting forces. Procedia Manuf 26:1459–1470

  55. Hanief M, Wani MF, Charoo MS (2017) Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis. Eng Sci Technol an Int J. https://doi.org/10.1016/j.jestch.2016.10.019

  56. Kovacic M, Balic J, Brezocnik M (2004) Evolutionary approach for cutting forces prediction in milling. J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2004.04.318

  57. Thellaputta GR, Raju CS, Bose PSC, Rao CSP (2018) Adaptive neuro fuzzy model development for prediction of cutting forces in milling with rotary tools. Mater Today 5:7429–7436

    Google Scholar 

  58. Wang L, Si H, Gu L (2019) Prediction of cutting forces in flank milling of parts with non-developable ruled surfaces. Chinese J Aeronaut. https://doi.org/10.1016/j.cja.2018.07.017

  59. Chen Z, Wang C, Zhang Y (2020) Multiple regression prediction model for cutting forces and surface roughness in micro-milling of TA2. Procedia CIRP 89:233–238

    Google Scholar 

  60. Hashemitaheri M, Mekarthy SMR, Cherukuri H (2020) Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by support vector and Gaussian process regression methods. Procedia Manuf. https://doi.org/10.1016/j.promfg.2020.05.139

  61. Sahoo P, Patra K, Singh VK et al (2020) Influences of TiAlN coating and limiting angles of flutes on prediction of cutting forces and dynamic stability in micro milling of die steel (P-20). J Mater Process Technol. https://doi.org/10.1016/j.jmatprotec.2019.116500

  62. Yoon S, Tu JF, Lee JH et al (2014) Effect of the magnetic pole arrangement on the surface roughness of STS 304 by magnetic abrasive machining. Int J Precis Eng Manuf. https://doi.org/10.1007/s12541-014-0467-x

  63. Postel M, Aslan D, Wegener K, Altintas Y (2019) Monitoring of vibrations and cutting forces with spindle mounted vibration sensors. CIRP Ann. https://doi.org/10.1016/j.cirp.2019.03.019

  64. Ravikumar S, Ramachandran KI (2018) Tool wear monitoring of multipoint cutting tool using sound signal features signals with machine learning techniques. Mater Today 5:25720–25729

    Google Scholar 

  65. Lv Z, Guo J, Lv H (2022) Safety poka yoke in zero-defect manufacturing based on digital twins. IEEE Trans Ind Inform. 19:1176–1184

    Article  Google Scholar 

  66. Li Z, Peng X, Hu G, Zhang D, Xu Z, Peng, Y.,… Xie, S. (2022) Towards real-time self-powered sensing with ample redundant charges by a piezostack-based frequency-converted generator from human motions. Energy Conv Manage 258:1. https://doi.org/10.1016/j.enconman.2022.115466

    Article  Google Scholar 

  67. Lv Z, Chen D, Feng H, Wei W, Lv H (2022) Artificial intelligence in underwater digital twins sensor networks. ACM Tran Sensor Net 18(3). https://doi.org/10.1145/3519301

  68. Zhang L, Zhang H, Cai G (2022) The multi-class fault diagnosis of wind turbine bearing based on multi-source signal fusion and deep learning generative model. IEEE Trans Instrum Meas 1. https://doi.org/10.1109/TIM.2022.3178483

  69. Li RJ, Xiang M, He YX et al (2016) Development of a high-precision touch-trigger probe using a single sensor. Appl Sci. https://doi.org/10.3390/app6030086

  70. Jywe WY, Chen CJ (2005) The development of a high-speed spindle measurement system using a laser diode and a quadrants sensor. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2004.12.002

  71. Jun MB, Burak Ozdoganlar O, DeVor RE et al (2002) Evaluation of a spindle-based force sensor for monitoring and fault diagnosis of machining operations. Int J Mach Tools Manuf. https://doi.org/10.1016/S0890-6955(01)00156-0

  72. Dutta S, Pal SK, Sen R (2016) On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis Eng. https://doi.org/10.1016/j.precisioneng.2015.06.007

  73. Lee ES, Du KJ, Kim NH (2003) Plunge grinding characteristics using the current signal of spindle motor. J Mater Process Technol. https://doi.org/10.1016/S0924-0136(02)00261-3

  74. Noguchi S, Ono K (2004) Reduction of NRRO in ball bearings for HDD spindle motors. Precis Eng. https://doi.org/10.1016/j.precisioneng.2004.01.005

  75. Christiand KG (2020) Digital twin approach for tool wear monitoring of micro-milling. Procedia CIRP 93:1532–1537. https://doi.org/10.1016/j.procir.2020.03.140

    Article  Google Scholar 

  76. Ni T, Liu D, Xu Q, Huang Z, Liang H et al (2020) Architecture of cobweb-based redundant TSV for clustered faults. IEEE Trans Very Large Scale Integ (VLSI) Sys 28(7):1736–1739. https://doi.org/10.1109/TVLSI.2020.2995094

    Article  Google Scholar 

  77. Sun R, Wang J, Cheng Q, Mao Y, Ochieng WY (2021) A new IMU-aided multiple GNSS fault detection and exclusion algorithm for integrated navigation in urban environments. GPS Solut 25(4). https://doi.org/10.1007/s10291-021-01181-4

  78. Sui T, Marelli D, Sun X, Fu M (2019) Multi-sensor state estimation over lossy channels using coded measurements. Automatica (Oxford) 111:108561. https://doi.org/10.1016/j.automatica.2019.108561

  79. Fu S, Cheng F, Tjahjowidodo T (2020) Surface topography measurement of mirror-finished surfaces using fringe-patterned illumination. Metals (Basel). https://doi.org/10.3390/met10010069

  80. Syam WP, Leach R, Rybalcenko K, Gaio A, Crabtree J (2018) In-process measurement of the surface quality for a novel finishing process for polymer additive manufacturing. Procedia CIRP 75:108–113

  81. Fang FZ, Zhang XD, Weckenmann A et al (2013) Manufacturing and measurement of freeform optics. CIRP Ann. - Manuf. Technol. 62:823–846

    Article  Google Scholar 

  82. Kruse D, Patzelt S, Dollinger C et al (2011) Laser optical characterization of smooth surfaces with respect to roughness and defects in the micrometer range. In: Procedia Engineering

    Google Scholar 

  83. Vacharanukul K, Mekid S (2005) In-process dimensional inspection sensors. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2005.07.009

  84. Minoni U, Cavalli F (2008) Surface quality control device for on-line applications. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2007.11.003

  85. Quinsat Y, Tournier C (2012) In situ non-contact measurements of surface roughness. Precis Eng. https://doi.org/10.1016/j.precisioneng.2011.07.011

  86. Murugarajan A, Samuel GL (2011) Measurement, modeling and evaluation of surface parameter using capacitive-sensor-based measurement system. Metrol Meas Syst. https://doi.org/10.2478/v10178-011-0007-9

  87. Schröder S, Duparré A, Coriand L et al (2011) Modeling of light scattering in different regimes of surface roughness. Opt Express. https://doi.org/10.1364/oe.19.009820

  88. Abidin ZFZ, Hung TJ, Zahid MNO (2019) Portable non-contact surface roughness measuring device. In: IOP Conference Series: Materials Science and Engineering, Vol. 469, No. 1. IOP Publishing, p 012074

  89. Babu Rao C, Baldev RAJ (2003) Study of engineering surfaces using laser-scattering techniques. Sadhana - Acad Proc Eng Sci. https://doi.org/10.1007/bf02706457

  90. Campana C, Derynioski B, Moslehpour S (2007) Non contact surface roughness measurement instrumentation. In 2007 Annual Conference and Exposition, pp 12–1107

  91. Chen T, Ye M, Liu S, Tian S (2017) Measurement of ultrasonic assisted grinding temperature based on fiber Bragg grating (FBG) sensor. Int J Adv Manuf Technol 93:2561–2570. https://doi.org/10.1007/s00170-017-0721-3

    Article  Google Scholar 

  92. Harun MHS, Ghazali MF, Yusoff AR (2017) Analysis of tri-axial force and vibration sensors for detection of failure criterion in deep twist drilling process. Int J Adv Manuf Technol 89:3535–3545. https://doi.org/10.1007/s00170-016-9344-3

    Article  Google Scholar 

  93. Sahoo PP, Basu S (2006) Use of a multi-sensor technique to monitor the mould oscillation in a continuous billet caster. ISIJ Int. https://doi.org/10.2355/isijinternational.46.219

  94. Phatak U, Bukkapatnam S, Kong Z, Komanduri R (2009) Sensor-based modeling of slurry chemistry effects on the material removal rate (MRR) in copper-CMP process. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2008.09.005

  95. Mathiyazhagan R, Sampathkumar S, Muthuramalingam T (2019) Prediction modeling of surface roughness using capacitive sensing technique in machining process. IEEE Sens J. https://doi.org/10.1109/JSEN.2019.2927174

  96. Murugarajan A, Samuel GL (2015) Characterization of dimensional features of mesoscale component using capacitive sensor. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-014-6573-1

  97. Cai C, Gao X, Teng Q et al (2020) Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation. Mater Sci Eng A 802:140426. https://doi.org/10.1016/j.msea.2020.140426

    Article  Google Scholar 

  98. Dobosz M, Woźniak A (2003) Metrological feasibilities of CMM touch trigger probes. Measurement. https://doi.org/10.1016/j.measurement.2003.05.002

  99. Du Y, Qin B, Zhao C, Zhu Y, Cao J et al (2021) A novel spatio-temporal synchronization method of roadside asynchronous MMW radar-camera for sensor fusion. IEEE Trans Intell Trans Sys 23:22278–22289. https://doi.org/10.1109/TITS.2021.3119079

    Article  Google Scholar 

  100. Sun R, Zhang Z, Cheng Q, Ochieng WY (2021) Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas. GPS Solut 26(1). https://doi.org/10.1007/s10291-021-01213-z

  101. Wang P, Wang L, Leung H, Zhang G (2021) Super-resolution mapping based on spatial-spectral correlation for spectral imagery. IEEE Trans Geosci Remot Sensing 59(3):2256–2268. https://doi.org/10.1109/TGRS.2020.3004353

    Article  Google Scholar 

  102. Zhou G, Deng R, Zhou X, Long S, Li W, Lin, G.,… Li, X. (2021) Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geosci Remot Sensing Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3107438

    Article  Google Scholar 

  103. Zhou G, Long S, Xu J, Zhou X, Song B, Deng R et al (2021) Comparison analysis of five waveform decomposition algorithms for the airborne LiDAR echo signal. IEEE J Selec Topics App Earth Observ Remot Sensing 14:7869–7880. https://doi.org/10.1109/JSTARS.2021.3096197

    Article  Google Scholar 

  104. Kwon J, Hong J, Kim YS, Lee DY, Lee K, Lee SM, Park SI (2003) Atomic force microscope with improved scan accuracy, scan speed, and optical vision. Rev Sci Instrum 74(10):4378–4383

  105. Johnson RP, Yang Q, Butler C (1998) Dynamic error characteristics of touch trigger probes fitted to coordinate measuring machines. IEEE Trans Instrum Meas 47(5):1168–1172

  106. Zhang C, Wang H (2020) Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification. Struct Control Heal Monit 27:e2543. https://doi.org/10.1002/stc.2543

    Article  Google Scholar 

  107. Jeong JH, Khim G, Oh JS, Chung SC (2018) Method for measuring location errors using a touch trigger probe on four-axis machine tools. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-018-2506-8

  108. Jiang Z, Bao S, Zhou X et al (2015) Identification of location errors by a touch-trigger probe on five-axis machine tools with a tilting head. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7189-9

  109. Mayer JRR (2012) Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact. CIRP Ann - Manuf Technol. https://doi.org/10.1016/j.cirp.2012.03.022

  110. Wozniak A, Byszewski M, Jankowski M (2013) Setup for triggering force testing of touch probes for CNC machine tools and CMMs. Meas Sci Rev. https://doi.org/10.2478/msr-2013-0004

  111. Woźniak A, Dobosz M (2003) Metrological feasibilities of CMM touch trigger probes. Part I: 3D theoretical model of probe pretravel. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2003.05.001

  112. Dobosz M, Woźniak A (2003) Metrological feasibilities of CMM touch trigger probes: Part II: experimental verification of the 3D theoretical model of probe pretravel. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2003.05.002

  113. Khan AM, Gupta MK, Hegab H et al (2020) Energy-based cost integrated modelling and sustainability assessment of Al-GnP hybrid nanofluid assisted turning of AISI52100 steel. J Clean Prod 257:120502. https://doi.org/10.1016/j.jclepro.2020.120502

    Article  Google Scholar 

  114. Khan AM, Jamil M, Mia M, et al (2020) Sustainability-based performance evaluation of hybrid nanofluid assisted machining. J Clean Prod 257:120541. https://doi.org/10.1016/j.jclepro.2020.120541

  115. Matsubara A, Ibaraki S (2009) Monitoring and control of cutting forces in machining processes: a review. Int J Autom Technol 3:445–456

    Article  Google Scholar 

  116. Ertunc HM, Oysu C (2004) Drill wear monitoring using cutting force signals. Mechatronics. https://doi.org/10.1016/j.mechatronics.2003.10.005

  117. Hong YC, Ha SJ, Cho MW (2012) Predicting of cutting forces in a ,micromilling process based on frequency analysis of sensor signals and modified polynomial neural network algorithm. Int J Precis Eng Manuf. https://doi.org/10.1007/s12541-012-0003-9

  118. Kono D, Matsubara A, Yamaji I, Fujita T (2008) High-precision machining by measurement and compensation of motion error. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2008.02.005

  119. Li C, Sun L, Xu Z et al (2020) Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring. Int J Struct Stab Dyn 20:2040011. https://doi.org/10.1142/S0219455420400118

    Article  Google Scholar 

  120. Zhou JH, Pang CK, Lewis FL, Zhong ZW (2009) Intelligent diagnosis and prognosis of tool wear using dominant feature identification. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2009.2023318

  121. Shin BC, Ha SJ, Cho MW et al (2010) Indirect cutting force measurement in the micro end-milling process based on frequency analysis of sensor signals. J Mech Sci Technol. https://doi.org/10.1007/s12206-009-1121-x

  122. Kim TY, Kim J (1996) Adaptive cutting force control for a machining center by using indirect cutting force measurements. Int J Mach Tools Manuf. https://doi.org/10.1016/0890-6955(96)00097-1

  123. Auchet S, Chevrier P, Lacour M, Lipinski P (2004) A new method of cutting force measurement based on command voltages of active electro-magnetic bearings. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2004.05.009

  124. Liang Q, Zhang D, Coppola G et al (2016) Design and analysis of a sensor system for cutting force measurement in machining processes. Sensors (Switzerland). https://doi.org/10.3390/s16010070

  125. Drossel WG, Gebhardt S, Bucht A et al (2018) Performance of a new piezoceramic thick film sensor for measurement and control of cutting forces during milling. CIRP Ann. https://doi.org/10.1016/j.cirp.2018.04.115

  126. Altintas Y, Park SS (2004) Dynamic compensation of spindle-integrated force sensors. CIRP Ann - Manuf Technol. https://doi.org/10.1016/S0007-8506(07)60703-3

  127. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2012.03.010

  128. Altintas Y (1992) Prediction of cutting forces and tool breakage in milling from feed drive current measurements. J Manuf Sci Eng Trans ASME. https://doi.org/10.1115/1.2900688

  129. Xie J, Luo MJ, Wu KK et al (2013) Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Int J Mach Tools Manuf 73:25–36. https://doi.org/10.1016/j.ijmachtools.2013.05.006

    Article  Google Scholar 

  130. Aslan D, Altintas Y (2018) Prediction of cutting forces in five-axis milling using feed drive current measurements. IEEE/ASME Trans Mechatronics. https://doi.org/10.1109/TMECH.2018.2804859

  131. Yamato S, Imabeppu Y, Irino N, Suzuki N, Kakinuma Y (2019) Enhancement of sensor-less cutting force estimation by tuning of observer parameters from cutting test. Procedia Manuf 41:272–279

    Article  Google Scholar 

  132. Gong X, Wang L, Mou Y, Wang H, Wei X, Zheng W et al (2022) Improved four-channel PBTDPA control strategy using force feedback bilateral teleoperation system. Int J Control 20(3):1002–1017. https://doi.org/10.1007/s12555-021-0096-y

    Article  Google Scholar 

  133. Wang J, Tian J, Zhang X, Yang B, Liu S, Yin L et al (2022) Control of time delay force feedback teleoperation system with finite time convergence. Front Neurorobo. https://doi.org/10.3389/fnbot.2022.877069

  134. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf. https://doi.org/10.1016/j.ijmachtools.2005.11.012

  135. Cascón I, Sarasua JA (2015) Enhancement of sensor-less cutting force estimation by tuning of observer parameters from cutting test. In: Yamato S, Imabeppu Y, Irino N, Suzuki N, Kakinuma Y. Procedia CIRP, Procedia Manufacturing, 41:272–279 

  136. Mebrahitom A, Choon W, Azhari A (2017) Side milling machining simulation using finite element analysis: prediction of cutting forces. Mater Today Proc 4:5215–5221. https://doi.org/10.1016/j.matpr.2017.05.029

    Article  Google Scholar 

  137. Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann - Manuf Technol. https://doi.org/10.1016/j.cirp.2008.03.085

  138. Zhang X, Zhang J, Pang B, Zhao WH (2016) An accurate prediction method of cutting forces in 5-axis flank milling of sculptured surface. Int. J. Mach. Tools Manuf. 104:26–36

    Article  Google Scholar 

  139. Budak E, Ozlu E, Bakioglu H, Barzegar Z (2016) Thermo-mechanical modeling of the third deformation zone in machining for prediction of cutting forces. CIRP Ann - Manuf Technol 65:121–124. https://doi.org/10.1016/j.cirp.2016.04.110

    Article  Google Scholar 

  140. Chen Y, Sun R, Gao Y, Leopold J (2017) A nested-ANN prediction model for surface roughness considering the effects of cutting forces and tool vibrations. Meas J Int Meas Confed 98:25–34. https://doi.org/10.1016/j.measurement.2016.11.027

    Article  Google Scholar 

  141. Zhang X, Yu T, Wang W (2018) Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out. Int J Mech Sci 136:124–133. https://doi.org/10.1016/j.ijmecsci.2017.12.019

    Article  Google Scholar 

  142. Dimla Snr DE (2000) Sensor signals for tool-wear monitoring in metal cutting operations - a review of methods. Int J Mach Tools Manuf. https://doi.org/10.1016/S0890-6955(99)00122-4

  143. Lei W, Hui Z, Xiang L, Zelin Z, Xu-Hui X et al (2021) Optimal remanufacturing service resource allocation for generalized growth of retired mechanical products: maximizing matching efficiency. IEEE Acc 9:89655–89674. https://doi.org/10.1109/ACCESS.2021.3089896

    Article  Google Scholar 

  144. Stavropoulos P, Papacharalampopoulos A, Vasiliadis E, Chryssolouris G (2016) Tool wear predictability estimation in milling based on multi-sensorial data. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7317-6

  145. Cuppini D, D’errico G, Rutelli G (1990) Tool wear monitoring based on cutting power measurement. Wear. https://doi.org/10.1016/0043-1648(90)90052-C

  146. Lu C, Zhu R, Yu F, Jiang X, Liu Z, Dong L et al (2021) Gear rotational speed sensor based on FeCoSiB/Pb(Zr,Ti)O3 magnetoelectric composite. Measurement 168:108409. https://doi.org/10.1016/j.measurement.2020.108409

    Article  Google Scholar 

  147. Zhang Z, Tian J, Huang W, Yin L, Zheng W et al (2021) A haze prediction method based on one-dimensional convolutional neural network. Atmosphere 12(10):1327. https://doi.org/10.3390/atmos12101327

    Article  Google Scholar 

  148. Lenz J, Westkaemper E (2017) Wear prediction of woodworking cutting tools based on history data. In: Procedia CIRP

    Google Scholar 

  149. Wang J, Xie J, Zhao R et al (2017) Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robot Comput Integr Manuf. https://doi.org/10.1016/j.rcim.2016.05.010

  150. Kim DH, Kim TJ, Wang X, Kim M, Quan YJ, Oh JW et al (2018) Smart machining process using machine learning: A review and perspective on machining industry. Int J Precis Eng Manuf-Green Technol 5(4):555–568

  151. Serin G, Gudelek MU, Ozbayoglu AM, Unver HO (2017) Estimation of parameters for the free-form machining with deep neural network. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, pp 2102–2111

  152. Mourtzis D, Vlachou E, Milas N (2016) Industrial big data as a result of IoT adoption in manufacturing. In: Procedia CIRP

    Google Scholar 

  153. Lampropoulos G, Siakas K, Anastasiadis T (2019) Internet of Things in the context of industry 4.0: an overview. Int J Entrep Knowl. https://doi.org/10.2478/ijek-2019-0001

  154. Nagy J, Oláh J, Erdei E et al (2018) The role and impact of industry 4.0 and the internet of things on the business strategy of the value chain-the case of hungary. Sustain. https://doi.org/10.3390/su10103491

  155. Campo R, Ricciardi F, Baldassarre F (2017) The advent of Industry 4.0 in manufacturing industry: literature review and growth opportunities. In: DIEM Dubrovnik Int Econ Meet

    Google Scholar 

  156. Liu C, Xu X (2017) Cyber-physical machine tool - the era of machine tool 4.0. Procedia CIRP 63:70–75. https://doi.org/10.1016/j.procir.2017.03.078

    Article  Google Scholar 

  157. Cao H, He Q, Yan J, Jafar S (2019) An IoT based framework for energy monitoring and analysis of die casting workshop. Procedia CIRP 80:693–698

  158. Liu W, Tang R, Peng T (2018) An IoT-enabled approach for energy monitoring and analysis of die casting machines. Procedia CIRP 69:656–661

  159. Lin YJ, Bin LC, Huang CY (2019) A realization of cyber-physical manufacturing control system through industrial internet of things. Procedia Manuf 39:287–293. https://doi.org/10.1016/j.promfg.2020.01.449

    Article  Google Scholar 

  160. Majstorovic V, Zivkovic S, Djurdjanovic D et al (2019) Building of internet of things model for cyber-physical manufacturing metrology model (CPM3). Procedia CIRP 81:862–867. https://doi.org/10.1016/j.procir.2019.03.215

    Article  Google Scholar 

  161. Chen X, Li C, Tang Y et al (2018) A framework for energy monitoring of machining workshops based on IoT. Procedia CIRP 72:1386–1391. https://doi.org/10.1016/j.procir.2018.03.085

    Article  Google Scholar 

  162. Li W, Kara S (2017) Methodology for monitoring manufacturing environment by using wireless sensor networks (WSN) and the Internet of Things (IoT). Procedia CIRP 61:323–328. https://doi.org/10.1016/j.procir.2016.11.182

    Article  Google Scholar 

  163. Shah D, Wang J, Peter He Q (2019) An internet-of-things enabled smart manufacturing testbed. IFAC-PapersOnLine 52:562–567. https://doi.org/10.1016/j.ifacol.2019.06.122

    Article  Google Scholar 

  164. Xu X, Han M, Nagarajan SM, Anandhan P (2020) Industrial Internet of Things for smart manufacturing applications using hierarchical trustful resource assignment. Comput Commun 160:423–430. https://doi.org/10.1016/j.comcom.2020.06.004

    Article  Google Scholar 

Download references

Data availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Aqib Mashood Khan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The consent to submit this paper has been received explicitly from all coauthors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandavalli, S.R., Khan, A.M., Iqbal, A. et al. Application of sophisticated sensors to advance the monitoring of machining processes: analysis and holistic review. Int J Adv Manuf Technol 125, 989–1014 (2023). https://doi.org/10.1007/s00170-022-10771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10771-6

Keywords

Navigation