Skip to main content
Log in

A review on dynamics in micro-milling

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper is a review of all recent and most relevant research in the field of dynamics in micro-milling processes. It associates the recent research works, future trends, and thoughts in the field of dynamics and revises the dynamics in machining definition, the mathematical notions applied for micro-milling with the consideration of the size effect and common phenomenon impacting the dynamic model, and the common methods of detection of the vibration and chatter as well as its suppression methods. It also combines all the remaining challenges and difficulties. Many researchers have published papers on conventional machining and have studied the dynamic characteristics and behavior. However, there is no relevant review paper in the field of dynamics in micro-milling. To conclude, this paper reviews relevant research work achieved in dynamics regarding the theories, detection, application, surface quality, and tool life. The research work and results presented in this paper allow a better understanding of micro-milling operations for the production of high-quality micro-components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors confirm that the data and material supporting the findings of this work are available within the article. The raw data that support the findings of this study are available from the corresponding author, upon a reasonable request.

Code availability

Not applicable.

References

  1. Esteve F, Olivier D, Hu Q, Baumers M (2017) Micro-manufacturing technologies and their applications. https://doi.org/10.1007/978-3-319-39651-4

  2. Shunmugam MS (2016) Machining challenges: macro to micro cutting. J Inst Eng(India): Series C 97:223–241. https://doi.org/10.1007/s40032-015-0182-0

  3. Möllensiep D, Ohm M, Störkle DD, Kuhlenkötter B (2019) Experimental validation of smoothed machine learning-based parameterization of local support in robot-based incremental sheet forming. https://doi.org/10.1007/978-3-662-60417-5_48

  4. Wu J, Qin L, Chen N, Qian C, Zheng S (2022) Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose. Energy 245. https://doi.org/10.1016/j.energy.2022.123318

  5. Pelayo GU (2019) Modelling of static and dynamic milling forces in inclined operations with circle-segment end mills. Precis Eng 56:123–135. https://doi.org/10.1016/j.precisioneng.2018.11.007

    Article  Google Scholar 

  6. Carvalho HMD, Gomes JDO, Schmidt MA, Brandáo VL (2015) Vibration analysis and energy efficiency in interrupted face milling processes. Procedia CIRP 29:245–250. https://doi.org/10.1016/j.procir.2015.02.165

  7. Kovać P, Mankova I (2011) A review of machining monitoring systems. J Prod 11:8–13. http://www.jpe.ftn.uns.ac.rs/papers/2011/Journalofproductionengineering2011.pdf#page=8

  8. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part II: tool run-out. Int J Mach Tool Manuf 40:2175–2192. https://doi.org/10.1016/S0890-6955(00)00055-9

    Article  Google Scholar 

  9. Cheng K, Huo D (2013) Micro-cutting: fundamentals and applications. https://doi.org/10.1002/9781118536605

  10. Mamedov A, K SEL, Lazoglu I (2015) Instantaneous tool deflection model for micro milling. Int J Adv Manuf Technol 79:769–777. https://doi.org/10.1007/s00170-015-6877-9

  11. Yao Q, Luo M, Zhang D (2020) Milling dynamic model based on rotatory euler-bernoulli beam model under distributed load. Appl Math Model 83:266–283. https://doi.org/10.1016/j.apm.2020.02.015

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu X, Li L, He N, Zhao M, Zhan Z (2015) Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper. Int J Adv Manuf Technol 79:321–327. https://doi.org/10.1007/s00170-015-6828-5

    Article  Google Scholar 

  13. Wu X, Li L, He N, Yao C, Zhao M (2016) Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting. Precis Eng 45:359–364. https://doi.org/10.1016/j.precisioneng.2016.03.012

    Article  Google Scholar 

  14. Mokhtari A, Jalili MM, Mazidi A, Abootorabi MM (2019) Size dependent vibration analysis of micro-milling operations with process damping and structural nonlinearities. Eur J Mech A Solids 76:57–69. https://doi.org/10.1016/j.euromechsol.2019.03.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Mokhtari A, Jalili MM, Mazidi A (2020) Study on frequency response and bifurcation analyses under primary resonance conditions of micro-milling operations. Appl Math Model 87:404–429. https://doi.org/10.1016/j.apm.2020.06.016

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoang TD, Nguyen DT, Lee AC (2016) An optimal design of micro-drill from the aspect of vibration analysis. Computer Assisted Methods in Engineering and Science 23:191–204

    Google Scholar 

  17. Lee AC, Hoang TD (2016) Coupled lateral and torsional vibrations of the micro-drilling spindle systems. Int J Adv Manuf Technol 87:2063–2079. https://doi.org/10.1007/s00170-016-8463-1

    Article  Google Scholar 

  18. Singh S, Ghai V, Agrawal A, Singh H (2019) Effect of machining parameters on cutting force during micro-turning of a brass rod. Mater Manuf Process 34:1816–1823. https://doi.org/10.1080/10426914.2019.1675887

  19. Chen W, Teng X, Zheng L, Xie W, Huo D (2018) Burr reduction mechanism in vibration-assisted micro milling. Manuf Lett 16:6–9. https://doi.org/10.1016/j.mfglet.2018.02.015

    Article  Google Scholar 

  20. Mohammadi MM, Branch A, Univercity IA (2011) A review on micro fabrication methods to produce investment patterns of microcasting 1:5–14

    Google Scholar 

  21. Lu X, Jia Z, Wang X, Liu Y, Liu M, Feng Y, Liang SY (2019) Measurement and prediction of vibration displacement in micro-milling of nickel-based superalloy. Measurement: Journal of the International Measurement Confederation 145:254–263. https://doi.org/10.1016/j.measurement.2019.05.089

  22. Ahmad MI, Yusof Y, Daud ME, Latiff K, Kadir AZA, Saif Y (2020). Machine monitoring system: a decade in review. https://doi.org/10.1007/s00170-020-05620-3

    Article  Google Scholar 

  23. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tool Manuf 51:363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  24. Boswell B, Islam MN, Davies IJ (2018) A review of micro-mechanical cutting. Int J Adv Manuf Technol 94:789–806. https://doi.org/10.1007/s00170-017-0912-y

    Article  Google Scholar 

  25. Ribeiro KS, Venter GS, Rodrigues AR (2020) Experimental correlation between acoustic emission and stability in micromilling of different grain-sized materials. Int J Adv Manuf Technol 109:2173–2187. https://doi.org/10.1007/s00170-020-05711-1

    Article  Google Scholar 

  26. Yuan Y, Jing X, Li H, Ehmann KF, Zhang D (2019) Chatter detection based on wavelet coherence functions in micro-end-milling processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233:1934–1945. https://doi.org/10.1177/0954405418808214

    Article  Google Scholar 

  27. Sestito GS, Venter GS, Ribeiro KSB, Rodrigues AR, da Silva MM (2022) In-process chatter detection in micro-milling using acoustic emission via machine learning classifiers. Int J Adv Manuf Technol 120:7293–7303. https://doi.org/10.1007/s00170-022-09209-w

    Article  Google Scholar 

  28. Zhu L, Liu C (2020) Recent progress of chatter prediction, detection and suppression in milling. https://doi.org/10.1016/j.ymssp.2020.106840

  29. Balázs BZ, Geier N, Takács M, Davim JP (2020) A review on micro-milling: recent advances and future trends. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-06445-w

    Article  Google Scholar 

  30. Wang Z, Yang Y, Liu Y, Liu K, Wu Y (2018) Prediction of time-varying chatter stability: effect of tool wear. Int J Adv Manuf Technol 99:2705–2716. https://doi.org/10.1007/s00170-018-2582-9

    Article  Google Scholar 

  31. Jauregui JC, Resendiz JR, Thenozhi S, Szalay T, Jacso A, Takacs M (2018) Frequency and time-frequency analysis of cutting force and vibration signals for tool condition monitoring. IEEE Access 6:6400–6410. https://doi.org/10.1109/ACCESS.2018.2797003

    Article  Google Scholar 

  32. Gomes MC, Brito LC, da Silva MB, Duarte MAV (2021) Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors. Precis Eng 67:137–151. https://doi.org/10.1016/j.precisioneng.2020.09.025

    Article  Google Scholar 

  33. CIRP Encyclopedia of Production Engineering (2014) https://doi.org/10.1007/978-3-642-20617-7

  34. Chen W, Teng X, Huo D, Wang Q (2017) An improved cutting force model for micro milling considering machining dynamics. Int J Adv Manuf Technol 93:3005–3016. https://doi.org/10.1007/s00170-017-0706-2

    Article  Google Scholar 

  35. Jin X, Xie B (2015) Experimental study on surface generation in vibration-assisted micro-milling of glass. Int J Adv Manuf Technol 81:507–512. https://doi.org/10.1007/s00170-015-7211-2

    Article  Google Scholar 

  36. Chen N, Li L, Wu J, Qian J, He N, Reynaerts D (2019) Research on the ploughing force in micro milling of soft-brittle crystals. Int J Mech Sci 155:315–322. https://doi.org/10.1016/j.ijmecsci.2019.03.004

    Article  Google Scholar 

  37. Sahoo P, Patra K, Szalay T, Dyakonov AA (2020) Determination of minimum uncut chip thickness and size effects in micro-milling of P-20 die steel using surface quality and process signal parameters. Int J Adv Manuf Technol 106:4675–4691. https://doi.org/10.1007/s00170-020-04926-6

  38. Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33:402–407. https://doi.org/10.1016/j.precisioneng.2008.11.002

    Article  Google Scholar 

  39. Bissacco G, Hansen HN, Chiffre LD (2006) Size effects on surface generation in micro milling of hardened tool steel. CIRP Ann Manuf Technol 55:593–596. https://doi.org/10.1016/S0007-8506(07)60490-9

    Article  Google Scholar 

  40. Chen N, Li HN, Wu J, Li Z, Li L, Liu G, He N (2021) Advances in micro milling: from tool fabrication to process outcomes. Int J Mach Tool Manuf 160:1–63. https://doi.org/10.1016/j.ijmachtools.2020.103670

    Article  Google Scholar 

  41. Salvati E, Korsunsky AM (2017) An analysis of macro- and micro-scale residual stresses of type I, II and III using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. Int J Plast 98:123–138. https://doi.org/10.1016/j.ijplas.2017.07.004

    Article  Google Scholar 

  42. Yan J, Asami T, Harada H, Kuriyagawa T (2012) Crystallographic effect on subsurface damage formation in silicon microcutting. CIRP Ann Manuf Technol 61:131–134. https://doi.org/10.1016/j.cirp.2012.03.070

    Article  Google Scholar 

  43. Lee DE, Hwang I, Valente CM, Oliveira JF, Dornfeld DA (2006) Precision manufacturing process monitoring with acoustic emission. Int J Mach Tool Manuf 46:176–188. https://doi.org/10.1016/j.ijmachtools.2005.04.001

    Article  Google Scholar 

  44. Rahman MA, Rahman M, Kumar AS (2017) Modelling of flow stress by correlating the material grain size and chip thickness in ultra-precision machining. Int J Mach Tool Manuf 123:57–75. https://doi.org/10.1016/j.ijmachtools.2017.08.001

    Article  Google Scholar 

  45. Zhang X, Yu T, Zhao J (2020) Surface generation modeling of micro milling process with stochastic tool wear. Precis Eng 61:170–181. https://doi.org/10.1016/j.precisioneng.2019.10.015

    Article  Google Scholar 

  46. Du Y, Song Q, Liu Z (2022) Prediction of micro milling force and surface roughness considering size-dependent vibration of micro-end mill. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08535-9

    Article  Google Scholar 

  47. O’Hara J, Fang F (2019) Advances in micro cutting tool design and fabrication. Int J Ext Manuf 1. https://doi.org/10.1088/2631-7990/ab3e7f

  48. Stephenson D, Agapiou J (2016) Machining dynamics. https://doi.org/10.1201/b19559-13

  49. Lu X, Hu X, Jia Z, Liu M, Gao S, Qu C, Liang SY (2018) Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718. Int J Adv Manuf Technol 94:2043–2056. https://doi.org/10.1007/s00170-017-1001-y

    Article  Google Scholar 

  50. Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tool Manuf 54–55:34–45. https://doi.org/10.1016/j.ijmachtools.2011.12.008

  51. Cao J, Brinksmeier E, Fu M, Gao RX, Liang B, Merklein M, Schmidt M, Yanagimoto J (2019) Manufacturing of advanced smart tooling for metal forming. CIRP Ann 68:605–628. https://doi.org/10.1016/j.cirp.2019.05.001

    Article  Google Scholar 

  52. Zheng Z, Jin X, Sun Y, Jiang X, Zhang Z, Liu B (2019) Research on cutting stability of high-efficiency micro turn-milling compound machine tool based on lobes. Solid State Phenomena 295 SSP:59–65. https://doi.org/10.4028/www.scientific.net/SSP.295.59

  53. Shi Y, Mahr F, Wagner UV, Uhlmann E (2013) Gyroscopic and mode interaction effects on micro-end mill dynamics and chatter stability. Int J Adv Manuf Technol 65:895–907. https://doi.org/10.1007/s00170-012-4226-9

    Article  Google Scholar 

  54. Wang T, Wu X, Zhang G, Xu B, Chen Y, Ruan S (2020) Theoretical study on the effects of the axial and radial runout and tool corner radius on surface roughness in slot micromilling process. Int J Adv Manuf Technol 108:1931–1944. https://doi.org/10.1007/s00170-020-05492-7

    Article  Google Scholar 

  55. Anandan KP, Tulsian AS, Donmez A, Ozdoganlar OB (2012) A technique for measuring radial error motions of ultra-high-speed miniature spindles used for micromachining. Precis Eng 36:104–120. https://doi.org/10.1016/j.precisioneng.2011.07.014

    Article  Google Scholar 

  56. Anandan KP, Ozdoganlar OB (2013) An LDV-based methodology for measuring axial and radial error motions when using miniature ultra-high-speed (UHS) micromachining spindles. Precis Eng 37:172–186. https://doi.org/10.1016/j.precisioneng.2012.08.001

    Article  Google Scholar 

  57. Anandan KP, Ozdoganlar OB (2016) A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles. Precis Eng 43:119–131. https://doi.org/10.1016/j.precisioneng.2015.07.002

    Article  Google Scholar 

  58. Shekhar S, Nahata S, Ozdoganlar OB (2020) The effect of spindle dynamics on tool-tip radial throw in micromachining. J Manuf Process 56:1397–1403. https://doi.org/10.1016/j.jmapro.2020.04.036

    Article  Google Scholar 

  59. Özel T, Olleak A, Thepsonthi T (2017) Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod Eng Res Devel 11:435–444. https://doi.org/10.1007/s11740-017-0761-4

    Article  Google Scholar 

  60. Zhou Y, Tian Y, Jing X, Ehmann KF (2017) A novel instantaneous uncut chip thickness model for mechanistic cutting force model in micro-end-milling. Int J Adv Manuf Technol 93:2305–2319. https://doi.org/10.1007/s00170-017-0638-x

    Article  Google Scholar 

  61. Mamedov A (2021) Micro milling process modeling: a review. Manuf Rev 8. https://doi.org/10.1051/mfreview/2021003

  62. Xuewei Z, Tianbiao Y, Wanshan W (2016) Chatter stability of micro end milling by considering process nonlinearities and process damping. Int J Adv Manuf Technol 87:2785–2796. https://doi.org/10.1007/s00170-016-8658-5

    Article  Google Scholar 

  63. Zhang X, Ehmann KF, Yu T, Wang W (2016) Cutting forces in micro-end-milling processes. Int J Mach Tool Manuf 107:21–40. https://doi.org/10.1016/j.ijmachtools.2016.04.012

    Article  Google Scholar 

  64. Dai W, Sun J, Chi Y, Lu Z, Xu D, Jiang N (2019) Review of machining equipment reliability analysis methods based on condition monitoring technology. Appl Sci (Switzerland) 9. https://doi.org/10.3390/app9142786

  65. Jun MBG, Liu X, DeVor RE, Kapoor SG (2006) Investigation of the dynamics of microend milling-part I: model development. J Manuf Sci Eng 128:893–900. https://doi.org/10.1115/1.2193546

    Article  Google Scholar 

  66. Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tool Manuf 56:28–38. https://doi.org/10.1016/j.ijmachtools.2011.12.010

    Article  Google Scholar 

  67. Altintas Y, Eynian M, Onozuka H (2008) Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann Manuf Technol 57:371–374. https://doi.org/10.1016/j.cirp.2008.03.048

    Article  Google Scholar 

  68. Huo D, Chen W, Teng X, Lin C, Yang K (2017) Modeling the influence of tool deflection on cutting force and surface generation in micro-milling. Micromachines 8:1–10. https://doi.org/10.3390/mi8060188

  69. Filiz S, Ozdoganlar OB (2008) Microendmill dynamics including the actual fluted geometry and setup errors - part II: model validation and application. Journal of Manufacturing Science and Engineering, Transactions of the ASME 130:0311201–03112013. https://doi.org/10.1115/1.2936379

    Article  Google Scholar 

  70. Mamedov A, Lazoglu I (2016) An evaluation of micro milling chip thickness models for the process mechanics. Int J Adv Manuf Tech 87:1843–1849. https://doi.org/10.1007/s00170-016-8584-6

  71. Rezaei H, Sadeghi MH, Budak E (2018) Determination of minimum uncut chip thickness under various machining conditions during micro-milling of Ti-6Al-4V. Int J Adv Manuf Technol 95:1617–1634. https://doi.org/10.1007/s00170-017-1329-3

    Article  Google Scholar 

  72. Geier N, Szalay T (2017) Optimisation of process parameters for the orbital and conventional drilling of uni-directional carbon fibre-reinforced polymers (UD-CFRP). Measurement: Journal of the International Measurement Confederation 110:319–334, https://doi.org/10.1016/j.measurement.2017.07.007

  73. Geier N, Davim JP, Szalay T (2019) Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: a review. Composites Part A: Appl Sci Manuf 125

  74. Zhang C, Ehmann K, Li Y (2015) Analysis of cutting forces in the ultrasonic elliptical vibration-assisted micro-groove turning process. Int J Adv Manuf Technol 78:139–152. https://doi.org/10.1007/s00170-014-6628-3

    Article  Google Scholar 

  75. Niu Z, Jiao F, Cheng K (2018) Investigation on innovative dynamic cutting force modelling in micro-milling and its experimental validation. Nanomanuf Metrol 1:82–95. https://doi.org/10.1007/s41871-018-0008-9

    Article  Google Scholar 

  76. Song Q, Liu Z, Shi Z (2014) Chatter stability for micromilling processes with flat end mill. Int J Adv Manuf Technol 71:1159–1174. https://doi.org/10.1007/s00170-013-5554-0

    Article  Google Scholar 

  77. Niu Z, Cheng K (2020) Improved dynamic cutting force modelling in micro milling of metal matrix composites part I: theoretical model and simulations. Proc Inst Mech Eng C J Mech Eng Sci 234:1733–1745. https://doi.org/10.1177/0954406219899688

    Article  Google Scholar 

  78. Wojciechowski S, Matuszak M, Powaka B, Madajewski M, Maruda RW, Królczyk GM, (2019) Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int J Mach Tools Manuf 147:103466. https://doi.org/10.1016/j.ijmachtools.2019.103466

  79. Banerjee JR (2019) Review of the dynamic stiffness method for free-vibration analysis of beams. Transp Saf Environ 1:106–116. https://doi.org/10.1093/tse/tdz005

    Article  Google Scholar 

  80. Su H, Banerjee JR (2015) Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput Struct 147:107–116. https://doi.org/10.1016/j.compstruc.2014.10.001

    Article  Google Scholar 

  81. Banerjee JR, Su H, Jackson DR (2006) Free vibration of rotating tapered beams using the dynamic stiffness method. J Sound Vib 298:1034–1054. https://doi.org/10.1016/j.jsv.2006.06.040

    Article  Google Scholar 

  82. Liu X, Jun MB, Devor RE, Kapoor SG (2004) Cutting mechanisms and their influence on dynamic forces, vibrations and stability in micro-endmilling. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED 15:583–592. https://doi.org/10.1115/IMECE2004-62416

    Article  Google Scholar 

  83. Tajalli SA, Movahhedy MR, Akbari J (2014) Chatter instability analysis of spinning micro-end mill with process damping effect via semi-discretization approach. Acta Mechanica 225:715–734. https://doi.org/10.1007/s00707-013-0981-4

  84. Damnjanović E, Nefovska-Danilović M, Petronijević M, Marjanović M (2017) Application of the dynamic stiffness method in the vibration analysis of stiffened composite plates. Procedia Engineering 199:224–229. https://doi.org/10.1016/j.proeng.2017.09.005

    Article  Google Scholar 

  85. Bogacz R, Popp K (1984) Dynamics and stability of train-track-systems. 2:709–721

    Google Scholar 

  86. Koplow MA, Bhattacharyya A, Mann BP (2006) Closed form solutions for the dynamic response of euler-bernoulli beams with step changes in cross section. J Sound Vib 295:214–225. https://doi.org/10.1016/j.jsv.2006.01.008

    Article  Google Scholar 

  87. Uhlmann E, Mahr F (2012) A time domain simulation approach for micro milling processes. Procedia CIRP 4:22–28. https://doi.org/10.1016/j.procir.2012.10.005

    Article  Google Scholar 

  88. Hill EL (1951) Hamilton’s principle and the conservation theorems of mathematical physics. Rev Mod Phys 23:253–260. https://doi.org/10.1103/RevModPhys.23.253

    Article  MathSciNet  MATH  Google Scholar 

  89. Khorasani AM, Gibson I, Goldberg M, Littlefair G (2018) A comprehensive study on surface quality in 5-axis milling of SLM Ti-6Al-4V spherical components. Int J Adv Manuf Technol 94:3765–3784. https://doi.org/10.1007/s00170-017-1048-9

    Article  Google Scholar 

  90. Tajalli SA, Movahhedy MR, Akbari J (2012) Investigation of the effects of process damping on chatter instability in micro end milling. Procedia CIRP 1:156–161. https://doi.org/10.1016/j.procir.2012.04.027

    Article  Google Scholar 

  91. Filiz S, Ozdoganlar OB, Romero LA (2008) An analytical model for micro-endmill dynamics. J Vib Control 14:1125–1150. https://doi.org/10.1177/1077546307080245

    Article  MATH  Google Scholar 

  92. Filiz S, Ozdoganlar OB (2008) Microendmill dynamics including the actual fluted geometry and setup errors - part I: model development and numerical solution. Journal of Manufacturing Science and Engineering, Transactions of the ASME 130:0311191–03111910. https://doi.org/10.1115/1.2917321

    Article  Google Scholar 

  93. Bediz B, Ozdoganlar OB (2019) Rotational dynamics of micro-scale cutting tools. Precis Eng 60:1–11. https://doi.org/10.1016/j.precisioneng.2019.07.004

    Article  Google Scholar 

  94. Malekian M, Park SS, Jun MB (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tool Manuf 49:586–598. https://doi.org/10.1016/j.ijmachtools.2009.02.006

    Article  Google Scholar 

  95. Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Technol 209:5766–5776. https://doi.org/10.1016/j.jmatprotec.2009.06.009

    Article  Google Scholar 

  96. Huang T, Chen Z, Zhang HT, Ding H (2015) Active control of an active magnetic bearings supported spindle for chatter suppression in milling process. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 137:1–11. https://doi.org/10.1115/1.4030841

    Article  Google Scholar 

  97. Schmitz TL, Davies MA, Kennedy MD (2001) Tool point frequency response prediction for high-speed machining by RCSA. J Manuf Sc Eng Trans of the ASME 123:700–707. https://doi.org/10.1115/1.1392994

    Article  Google Scholar 

  98. Chen Z, Zhang HT, Zhang X, Ding H (2014) Adaptive active chatter control in milling processes. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 136. https://doi.org/10.1115/1.4025694

  99. Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, Stepan G (2016) Chatter suppression techniques in metal cutting. CIRP Ann Manuf Technol 65:785–808. https://doi.org/10.1016/j.cirp.2016.06.004

    Article  Google Scholar 

  100. Malekian M, Park SS, Jun MB (2009) Tool wear monitoring of micro-milling operations. J Mater Process Tech 209:4903–4914. https://doi.org/10.1016/j.jmatprotec.2009.01.013

  101. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall Inc, Simon & Schuster A Viacom Company, Upper Saddle River, NJ 7458:23

  102. Kuram E, Ozcelik B (2016) Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling. J Intell Manuf 27:817–830. https://doi.org/10.1007/s10845-014-0916-5

    Article  Google Scholar 

  103. Gang Z, Yunming Z (2010) Application of BP neural network on workpiece edge quality prediction in micro-milling

  104. Si L, Wang X (2016) Surface roughness prediction model of micro-milling Inconel 718 with consideration of tool wear xiaohong lu *, zhenyuan jia , hua wang , 12:93–108

  105. Verma NK, Patel RK (2019) Computing algorithms with applications in engineering

  106. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tool Manuf 46:313–332. https://doi.org/10.1016/j.ijmachtools.2005.05.015

    Article  Google Scholar 

  107. Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J Mater Process Technol 212:542–552. https://doi.org/10.1016/j.jmatprotec.2011.05.020

    Article  Google Scholar 

  108. Keshavarzi M, Hasani JY (2019) Design and optimization of fully differential capacitive mems accelerometer based on surface micromachining. Microsyst Technol 25:1369–1377. https://doi.org/10.1007/s00542-018-4187-5

    Article  Google Scholar 

  109. Sandwell A, Lee J, Park C, Park SS (2020) Novel multi-degrees of freedom optical table dynamometer for force measurements. Sens Actuators, A 303. https://doi.org/10.1016/j.sna.2019.111688

    Article  Google Scholar 

  110. Singh KK, Singh R, Kartik V (2015) Comparative study of chatter detection methods for high-speed micromilling of Ti6Al4V. Procedia Manufacturing 1:593–606. https://doi.org/10.1016/j.promfg.2015.09.040

    Article  Google Scholar 

  111. Chern GL, Chang YC (2006) Using two-dimensional vibration cutting for micro-milling. Int J Mach Tool Manuf 46:659–666. https://doi.org/10.1016/j.ijmachtools.2005.07.006

    Article  Google Scholar 

  112. Mittal RK, Kulkarni SS, Singh RK (2017) Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V. J Manuf Process 28:413–421. https://doi.org/10.1016/j.jmapro.2017.04.007

    Article  Google Scholar 

  113. Onishi T, Ohashi K, Higashi K, Morinaka Y, Banno S, Kitagawa T, Tsukamoto S (2016) In-process monitoring of the machining state in superfinishing by measuring the dynamic machining forces. Advanced Materials Research 1136:592–596. https://doi.org/10.4028/www.scientific.net/amr.1136.592

    Article  Google Scholar 

  114. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tool Manuf 61:27–47. https://doi.org/10.1016/j.ijmachtools.2012.05.007

    Article  Google Scholar 

  115. Liu Y, Li TX, Liu K, Zhang YM (2016) Chatter reliability prediction of turning process system with uncertainties. Mech Syst Signal Process 66–67:232–247. https://doi.org/10.1016/j.ymssp.2015.06.030

    Article  Google Scholar 

  116. Aran V (2011) Budak E. An experimental study on dynamics and stability of miniature end mills. 223:869–878. https://doi.org/10.4028/www.scientific.net/AMR.223.869

    Article  Google Scholar 

  117. Ma W, Yang Y, Jin X (2021) Chatter suppression in micro-milling using shank-mounted two-dof tuned mass damper. Precis Eng 72:144–157. https://doi.org/10.1016/j.precisioneng.2021.04.017

    Article  Google Scholar 

  118. Bediz B, Gozen BA, Korkmaz E, Ozdoganlar OB (2014) Dynamics of ultra-high-speed (UHS) spindles used for micromachining. Int J Mach Tool Manuf 87:27–38. https://doi.org/10.1016/j.ijmachtools.2014.07.007

    Article  Google Scholar 

  119. Matuszak M, Powalka B, Kochmanski P (2013) Chatter stability investigation in micro-milling. J Mach Eng 13. https://www.researchgate.net/publication/266382844_CHATTER_STABILITY_INVESTIGATION_IN_MICRO-MILLING

  120. Grossi N, Sallese L, Scippa A, Campatelli G (2017) Improved experimental-analytical approach to compute speed-varying tool-tip FRF. Precis Eng 48:114–122. https://doi.org/10.1016/j.precisioneng.2016.11.011

    Article  Google Scholar 

  121. Arrabiyeh PA, Setti D, Basten S, Kirsch B, Aurich JC (2019) Micro grinding 16MnCr5 hardened steel using micro pencil grinding tools with diameters 50 \(\mu\)m. CIRP J Manuf Sci Technol 27:1–10. https://doi.org/10.1016/j.cirpj.2019.10.002

    Article  Google Scholar 

  122. Sofuolu FH, Gürgen S, Orak S, Kuhan MC (2018) Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. Int J Adv Manuf Technol 95:83–97. https://doi.org/10.1007/s00170-017-1153-9

  123. Jin X, Altintas Y (2013) Chatter stability model of micro-milling with process damping. Journal of Manufacturing Science and Engineering, Transactions of the ASME 135:1–9. https://doi.org/10.1115/1.4024038

    Article  Google Scholar 

  124. Shi J, Jin X, Cao H (2022) Chatter stability analysis in micro-milling with aerostatic spindle considering speed effect. Mech Syst Signal Process 169. https://doi.org/10.1016/j.ymssp.2021.108620

  125. Muhammad BB, Wan M, Feng J, Zhang WH (2017) Dynamic damping of machining vibration: a review. Int J Adv Manuf Technol 89:2935–2952. https://doi.org/10.1007/s00170-016-9862-z

    Article  Google Scholar 

  126. Wu Y, Song Q, Liu Z, Wang B (2019) Stability of turning process with a distributed cutting force model. Int J Adv Manuf Technol 102:1215–1225. https://doi.org/10.1007/s00170-018-2949-y

    Article  Google Scholar 

  127. Chen Y, Li H, Jing X, Hou L, Bu X (2019) Intelligent chatter detection using image features and support vector machine. Int J Adv Manuf Technol 102:1433–1442. https://doi.org/10.1007/s00170-018-3190-4

    Article  Google Scholar 

  128. Chen W, Huo D, Shi Y, Hale JM (2018) State-of-the-art review on vibration-assisted milling: principle, system design, and application. Int J Adv Manuf Technol 97:2033–2049. https://doi.org/10.1007/s00170-018-2073-z

    Article  Google Scholar 

  129. Ko JH, Tan SW (2013) Chatter marks reduction in meso-scale milling through ultrasonic vibration assistance parallel to tooling’s axis. Int J Precis Eng Manuf 14:17–22. https://doi.org/10.1007/s12541-013-0003-4

    Article  Google Scholar 

  130. Li KM, Wang SL (2014) Effect of tool wear in ultrasonic vibration-assisted micro-milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 228:847–855. https://doi.org/10.1177/0954405413510514

    Article  Google Scholar 

  131. Hasan M, Zhao J, Jiang Z (2017) A review of modern advancements in micro drilling techniques. J Manuf Process 29:343–375. https://doi.org/10.1016/j.jmapro.2017.08.006

    Article  Google Scholar 

  132. Shen XH, Zhang JH, Li H, Wang JJ, Wang XC (2012) Ultrasonic vibration-assisted milling of aluminum alloy. Int J Adv Manuf Technol 63:41–49. https://doi.org/10.1007/s00170-011-3882-5

    Article  Google Scholar 

  133. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32:153–172. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  134. Shen XH, Zhang J, Xing DX, Zhao Y (2012) A study of surface roughness variation in ultrasonic vibration-assisted milling. Int J Adv Manuf Technol 58:553–561. https://doi.org/10.1007/s00170-011-3399-y

    Article  Google Scholar 

  135. Zhang X, Arefin S, Kumar AS, Liu K (2018) Elastic and plastic chip deformation mechanism in 1D vibration-assisted metal cutting. Procedia CIRP 71:309–312. https://doi.org/10.1016/j.procir.2018.05.027

    Article  Google Scholar 

  136. Zhang C, Guo P, Ehmann KF, Li Y (2016) Effects of ultrasonic vibrations in micro-groove turning. Ultrasonics 67:30–40. https://doi.org/10.1016/j.ultras.2015.12.016

    Article  Google Scholar 

  137. Shi Z, Guo B, Zhao Q, Ji T (2019) A study on micro-machining spinel by applying ordinary cutting and ultra-sonic elliptical vibration cutting. Int J Adv Manuf Technol 104:1677–1692. https://doi.org/10.1007/s00170-019-03905-w

    Article  Google Scholar 

  138. Huo D, Cheng K, Wardle F (2010) Design of a five-axis ultra-precision micro-milling machine - ultramill . Part 2: integrated dynamic modelling , design optimisation and analysis pp 879–890. https://doi.org/10.1007/s00170-009-2129-1

  139. Liu X, Su CY, Yang F (2017) FNN approximation-based active dynamic surface control for suppressing chatter in micro-milling with piezo-actuators. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47:2100–2113. https://doi.org/10.1109/TSMC.2016.2611579

    Article  Google Scholar 

  140. Alexander NA, Schilder F (2009) Exploring the performance of a nonlinear tuned mass damper. J Sound Vib 319:445–462. https://doi.org/10.1016/j.jsv.2008.05.018

    Article  Google Scholar 

  141. Shakeri S, Samani FS (2017) Application of linear and nonlinear vibration absorbers in micro-milling process in order to suppress regenerative chatter. Nonlinear Dyn 89:851–862. https://doi.org/10.1007/s11071-017-3488-z

    Article  Google Scholar 

  142. Yue C, Gao H, Liu X, Liang SY, Wang L (2019) A review of chatter vibration research in milling. Chinese J Aeronaut 32:215–242. https://doi.org/10.1016/j.cja.2018.11.007

  143. Verl A, Valente A, Melkote S, Brecher C, Ozturk E, Tunc LT (2019) Robots in machining. CIRP Ann 68:799–822. https://doi.org/10.1016/j.cirp.2019.05.009

    Article  Google Scholar 

  144. Mokhtari A, Jalili MM, Mazidi A (2021) Optimization of different parameters related to milling tools to maximize the allowable cutting depth for chatter-free machining. Proceedings of the Institution of Mechanical Engineers, Part B: J Eng Manuf 235:230–241. https://doi.org/10.1177/0954405420937536

    Article  Google Scholar 

  145. Klauer K, Eifler M, Kirsch B, Seewig J, Aurich JC (2020) Correlation between different cutting conditions, surface roughness and dimensional accuracy when ball end micro milling material measures with freeform surfaces. Mach Sci Technol 24:446–464. https://doi.org/10.1080/10910344.2019.1698611

    Article  Google Scholar 

  146. Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Meas: J Int Meas Confed 46:1849–1864. https://doi.org/10.1016/j.measurement.2013.02.002

  147. Wojciechowski S, Mrozek K (2017) Mechanical and technological aspects of micro ball end milling with various tool inclinations. Int J Mech Sci 134:424–435. https://doi.org/10.1016/j.ijmecsci.2017.10.032

    Article  Google Scholar 

  148. Liu D, Liu X, Pei X, Wang C, Chen L (2020) A regenerative chatter observer analysis for micro-milling. IOP Conference Series: Materials Science and Engineering 758. https://doi.org/10.1088/1757-899X/758/1/012066

  149. Ranjan J, Patra K, Szalay T, Mia M, Gupta MK, Song Q, Krolczyk G, Chudy R, Pashnyov VA, Pimenov DY (2020) Artificial intelligence-based hole quality prediction in micro-drilling using multiple sensors. Sensors (Switzerland) 20:1–14. https://doi.org/10.3390/s20030885

    Article  Google Scholar 

  150. Sagris D, Davids C, Stergianni E, Tsiafis C, Tsiafis I (2017) Computational and experimental analysis of machine tool vibrations in micro-milling. MATEC Web of Conferences 112:112–5. https://doi.org/10.1051/matecconf/201711201022

  151. Wang L, Wang W, Liu D (2017) Dynamic feature based adaptive process planning for energy-efficient nc machining. CIRP Ann Manuf Technol 66:441–444. https://doi.org/10.1016/j.cirp.2017.04.015

    Article  Google Scholar 

  152. Editor S, Davim JP, Joshi SN (2019) Lecture Notes on Multidisciplinary Ind Eng Adv Comput Meth Manuf. ISBN: 9789813290716. https://www.springerprofessional.de/en/lecture-notes-on-multidisciplinary-industrial-engineering/12487286?page=2

  153. Chen W, Xie W, Huo D, Yang K (2018) A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect. Int J Mech Sci 144:146–157. https://doi.org/10.1016/j.ijmecsci.2018.05.050

    Article  Google Scholar 

  154. Chen Q, Li W, Ren Y, Zhou Z (2020) 3D chatter stability of high-speed micromilling by considering nonlinear cutting coefficients, and process damping. J Manuf Process 57:552–565. https://doi.org/10.1016/j.jmapro.2020.07.016

    Article  Google Scholar 

  155. irfan Ucun, Aslantas K, Bedir F (2013) An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear 300:8–19. https://doi.org/10.1016/j.wear.2013.01.103

  156. Qu D, Zhang P, Xue J, Fan Y, Chen Z, Wang B (2018) Experimental study on the effects of coolants on surface quality and mechanical properties of micromilled thin-walled elgiloy. Materials 11. https://doi.org/10.3390/ma11091497

  157. Chen N, Yuan Y, Guo C, Zhang X, Hao X, He N (2020) Design, optimization and manufacturing of polycrystalline diamond micro-end-mill for micro-milling of GH4169. Diam Relat Mater 108

  158. Serje D, Pacheco J, Diez E (2020) Micromilling research: current trends and future prospects. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-020-06205-w

    Article  Google Scholar 

  159. Nahata S, Onler R, Ozdoganlar OB (2019) Radial throw in micromilling: a simulation-based study to analyze the effects on surface quality and uncut chip thickness. J Micro Nano-Manuf 7. https://doi.org/10.1115/1.4043176

  160. Ding H, Ibrahim R, Cheng K, Chen SJ (2010) Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling. Int J Mach Tool Manuf 50:1115–1118. https://doi.org/10.1016/j.ijmachtools.2010.08.010

    Article  Google Scholar 

  161. Han J, Hao X, Li L, Liu L, Chen N, Zhao G, He N (2020) Investigation on surface quality and burr generation of high aspect ratio (HAR) micro-milled grooves. J Manuf Process 52:35–43. https://doi.org/10.1016/j.jmapro.2020.01.041

    Article  Google Scholar 

  162. Sorgato M, Bertolini R, Bruschi S (2020) On the correlation between surface quality and tool wear in micro-milling of pure copper. J Manuf Process 50:547–560. https://doi.org/10.1016/j.jmapro.2020.01.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to declare their sincere appreciation to the National Natural Science Foundation of China (NSFC) (Nos. 51905270, 52111530094, 51975288), the National Key Research and Development Plan (No. 2020YFB2010605), the Aeronautical Science Foundation of China (No. 2020Z044052001), Young Elite Scientists Sponsor-ship Program by CAST, and China Scholarship Council (CSC) for their support.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51905270, 52111530094, 51975288), the National Key Research and Development Plan (No. 2020YFB2010605), the Aeronautical Science Foundation of China (No. 2020Z044052001), Young Elite Scientists Sponsor-ship Program by CAST, and China Scholarship Council (CSC) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning He.

Ethics declarations

Ethics approval

The authors declare compliance with ethical standards.

Consent to participate

The authors consent to participate.

Consent for publication

The authors consent to publish.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitz, T., He, N., Chen, N. et al. A review on dynamics in micro-milling. Int J Adv Manuf Technol 122, 3467–3491 (2022). https://doi.org/10.1007/s00170-022-10014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10014-8

Keywords

Navigation