Skip to main content
Log in

Numerical research on kerf characteristics of abrasive waterjet machining based on the SPH-DEM-FEM approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Abrasive waterjet machining has been widely used because of flexibility, but the cutting accuracy is difficult to ensure due to the lack of dynamic analysis in the forming process of the kerf. In this paper, a coupled SPH-DEM-FEM method is proposed to predict the cutting qualities of the abrasive water jet machining under different process parameters and reveal the mechanism of the kerf formation. Compared with previous simulation methods, the new simulation method has advantages in the simulations for long-term water jet cutting. The abrasive particles and waterjet particles are continuously generated during calculations to reduce the model size and raise the calculation efficiency. The discrete element method (DEM) is utilized to characterize the flow of abrasive particles, which follows the Gaussian distribution. The collisions of non-spherical particles are concerned by the friction factors. The water flow with large deformation is expressed in the smoothed particle hydrodynamics (SPH) method. And the erosion contact is set between particles and the target. Finally, experiments are conducted to verify the authenticity of the simulation model. The cutting depths and kerf top widths obtained by the simulations are consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu HT (2017) Precision machining of advanced materials with waterjets. IOP Conf Ser Mater Sci Eng 164:012008. https://doi.org/10.1088/1757-899x/164/1/012008

    Article  Google Scholar 

  2. Wang F, Ji K, Guo Z (2020) Microstructural analysis of failure progression for coated carbide tools during high-speed milling of Ti-6Al-4V. Wear 456-457:203356. https://doi.org/10.1016/j.wear.2020.203356

    Article  Google Scholar 

  3. Liu X, Liang Z, Wen G, Yuan X (2019) Waterjet machining and research developments: a review. Int J Adv Manuf Technol 102:1257–1335. https://doi.org/10.1007/s00170-018-3094-3

    Article  Google Scholar 

  4. Li X, Ruan X, Zou J, Long X, Chen Z (2020) Experiment on carbon fiber–reinforced plastic cutting by abrasive waterjet with specific emphasis on surface morphology. Int J Adv Manuf Technol 107(1–2):145–156. https://doi.org/10.1007/s00170-020-05053-y

    Article  Google Scholar 

  5. Hashish M (1991) Optimization factors in abrasive-waterjet machining. J Eng Ind 113(1):29–37

    Article  Google Scholar 

  6. Hlavacova IM, Geryk V (2017) Abrasives for waterjet cutting of high-strength and thick hard materials. Int J Adv Manuf Technol 90(5):1217–1224. https://doi.org/10.1007/s00170-016-9462-y

    Article  Google Scholar 

  7. Yu Y, Sun T, Yuan Y, Gao H, Wang X (2020) Experimental investigation into the effect of abrasive process parameters on the cutting performance for abrasive waterjet technology: a case study. Int J Adv Manuf Technol 107(5–6):2757–2765. https://doi.org/10.1007/s00170-020-05183-3

    Article  Google Scholar 

  8. Lebar A, Junkar M (2004) Simulation of abrasive water jet cutting process: part 1. Unit event approach. Model Simul Mater Sci Eng 12(6):1159–1170

    Article  Google Scholar 

  9. Liang Z, Xie B, Liao S, Zhou J (2015) Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int J Adv Manuf Technol 80(5–8):887–905. https://doi.org/10.1007/s00170-015-7027-0

    Article  Google Scholar 

  10. Lv Z, Hou R, Chen X, Huang C (2019) Numerical research on erosion involved in ultrasonic-assisted abrasive waterjet machining. Int J Adv Manuf Technol 103:617–630. https://doi.org/10.1007/s00170-019-03584-7

    Article  Google Scholar 

  11. Feng L, Liu GR, Li Z, Dong X, Du M (2018) Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method. Int J Adv Manuf Technol 101(9–12):3167–3182. https://doi.org/10.1007/s00170-018-3119-y

    Article  Google Scholar 

  12. Pozzetti G, Peters B (2018) A numerical approach for the evaluation of particle-induced erosion in an abrasive waterjet focusing tube. Powder Technol 333:229–242. https://doi.org/10.1016/j.powtec.2018.04.006

    Article  Google Scholar 

  13. Qiang Z, Wu M, Miao X, Sawhney R (2018) CFD research on particle movement and nozzle wear in the abrasive water jet cutting head. Int J Adv Manuf Technol 95(9–12):4091–4100. https://doi.org/10.1007/s00170-017-1504-6

    Article  Google Scholar 

  14. Nyaboro JN, Ahmed MA, El-Hofy H, El-Hofy M (2018) Numerical and experimental characterization of kerf formation in abrasive waterjet machining. In: ASME International Mechanical Engineering Congress and Exposition, vol 52019. American Society of Mechanical Engineers, p V002T02A050. https://doi.org/10.1115/IMECE2018-88617

  15. Liu H, Wang J, Kelson N, Brown RJ (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Process Technol 153-154:488–493. https://doi.org/10.1016/j.jmatprotec.2004.04.037

    Article  Google Scholar 

  16. Eltobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45(11):1337–1346. https://doi.org/10.1016/j.ijmachtools.2005.01.007

    Article  Google Scholar 

  17. Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of abrasive waterjet milled footprints. J Mater Process Technol 213(2):180–193. https://doi.org/10.1016/j.jmatprotec.2012.09.006

    Article  Google Scholar 

  18. Jianming W, Na G, Wenjun G (2010) Abrasive waterjet machining simulation by SPH method. Int J Adv Manuf Technol 50(1–4):227–234. https://doi.org/10.1007/s00170-010-2521-x

    Article  Google Scholar 

  19. Feng Y, Jianming W, Feihong L (2011) Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting. Int J Adv Manuf Technol 59(1–4):193–200. https://doi.org/10.1007/s00170-011-3495-z

    Article  Google Scholar 

  20. Wenjun G, Jianming W, Na G (2010) Numerical simulation for abrasive water jet machining based on ALE algorithm. Int J Adv Manuf Technol 53(1–4):247–253. https://doi.org/10.1007/s00170-010-2836-7

    Article  Google Scholar 

  21. Anwar S, Axinte DA, Becker AA (2013) Finite element modelling of overlapping abrasive waterjet milled footprints. Wear 303(1–2):426–436. https://doi.org/10.1016/j.wear.2013.03.018

    Article  Google Scholar 

  22. Lozano Torrubia P, Axinte DA, Billingham J (2015) Stochastic modelling of abrasive waterjet footprints using finite element analysis. Int J Mach Tools Manuf 95:39–51. https://doi.org/10.1016/j.ijmachtools.2015.05.001

    Article  MATH  Google Scholar 

  23. Dong X, Li Z, Jiang C, Liu Y (2019) Smoothed particle hydrodynamics (SPH) simulation of impinging jet flows containing abrasive rigid bodies. Comput Part Mech 6(3):479–501

  24. Xu J, Wang J (2013) Node to node contacts for SPH applied to multiple fluids with large density ratio. In: Proceedings of the 9th European LS-DYNA Users’ Conference, Manchester, UK, pp 2–4

  25. Yreux E (2018) Fluid flow modeling with SPH in LS-DYNA®. In: Proceedings of the 15th International LS_DYNA Users Conference, Dearborn, MI, USA

  26. Flores-Johnson EA, Wang S, Maggi F, El Zein A, Gan Y, Nguyen GD, Shen L (2016) Discrete element simulation of dynamic behaviour of partially saturated sand. Int J Mech Mater Des 12(4):495–507. https://doi.org/10.1007/s10999-016-9350-5

    Article  Google Scholar 

  27. Karajan N, Han Z, Teng H, Wang J (2014) On the parameter estimation for the discrete-element method in LS-DYNA®. In: Proceedings of the 13th International LS_DYNA Users Conference, Dearborn, MI, USA, pp 8–10

  28. Karajan N, Han Z, Ten H, Wang J (2013) Interaction possibilities of bonded and loose particles in LS-DYNA. In: Proceedings of the 9th European LS-DYNA Users’ Conference, Manchester, UK, no 1, pp 1–27

  29. LSTC (2019) LS-DYNA keyword user's manual, vol I. Livemore Software Technology Corporation, Livermore

    Google Scholar 

  30. Tokura S (2015) Validation of fluid analysis capabilities in LS-DYNA Based on experimental eesult. In: Proceedings of the 10th European LS-DYNA Users’ Conference, Würzburg

  31. Wang F, Wang R, Zhou W, Chen G (2017) Numerical simulation and experimental verification of the rock damage field under particle water jet impacting. Int J Impact Eng 102:169–179. https://doi.org/10.1016/j.ijimpeng.2016.12.019

    Article  Google Scholar 

  32. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  33. Crocker L (2017) Good practice guide to the application of finite element analysis to erosion modelling. National Physical Laboratory, Teddington

    Google Scholar 

  34. Momber AW, Kovacevic R (2012) Principles of abrasive water jet machining. Springer Science & Business Media, London

  35. Eitobgy M, Ng EG, Elbestawi MA (2005) Modelling of abrasive waterjet machining: a new approach. CIRP Ann 54(1):285–288. https://doi.org/10.1016/s0007-8506(07)60104-8

    Article  Google Scholar 

  36. Chen FL, Siores E (2001) The effect of cutting jet variation on striation formation in abrasive water jet cutting. Int J Mach Tools Manuf 41(10):1479–1486. https://doi.org/10.1016/S0890-6955(01)00013-X

    Article  Google Scholar 

  37. Schwartzentruber J, Spelt JK, Papini M (2018) Modelling of delamination due to hydraulic shock when piercing anisotropic carbon-fiber laminates using an abrasive waterjet. Int J Mach Tools Manuf 132:81–95. https://doi.org/10.1016/j.ijmachtools.2018.05.001

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51805476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijin Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Wang, H., Dong, H. et al. Numerical research on kerf characteristics of abrasive waterjet machining based on the SPH-DEM-FEM approach. Int J Adv Manuf Technol 111, 3519–3533 (2020). https://doi.org/10.1007/s00170-020-06340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06340-4

Keywords

Navigation